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Abstract

The concepts of convexity of a set, convexity of a function and monotonicity of an operato
respect to a second-order ordinary differential equation are introduced in this paper. Sever
known properties of usual convexity are derived in this context, in particular, a characteriza
convexity of function and monotonicity of an operator. A sufficient optimality condition for a
timization problem is obtained as an application. A number of examples of convex sets, c
functions and monotone operators with respect to a differential equation are presented.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Convexity is essentially a one-dimensional concept, as it bases its definition on
joining two arbitrary points. This special property of convex functions allows its exten
to different settings. Works dealing with this topic include the ones by Avriel [1], Av
and Zang [2], Pini [12], Rapcsák [13] and Udriste [16]. One such topic was introduc
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Ortega and Rheinboldt [10], who defined arcwise connectivity by replacing the line jo
two points by a continuous arc joining them. This idea has been investigated and
extended for different reasons by many authors, see, for example: Avriel and Zan
Kaul, Lyall and Kaur [9], Bhatia and Mehra [5], Suneja, Aggarwal and Davar [14], D
and Mehra [6] and Fu and Wang [7].

The concepts of convexity of functions and second-order differential equations
used together for the first time by Peixoto [11] and as a particular notion of conv
introduced by Beckenbach [3], see also Beckenbach and Bing [4]. The idea used
setting extended the convexity concept of a function by using a geometrical appro
its epigraph. More specifically, since the convexity of a function is equivalent to the
vexity of its epigraph, the extension is obtained by substituting a line joining two p
in the epigraph by a curve, namely, a solution of a fixed second-order ordinary differ
equation.

In this paper we investigate a sub-class of functions of that introduced by Orteg
Rheinboldt [10]. The aim is to bring together the ideas of both Peixoto [11] and Orteg
Rheinboldt [10] and to explore its intrinsic uni-dimensional property. More specific
we will study the sets and the functions that are convex on solutions of a second
differential equationx′′ = Γ (t, x, x′). In the definition of usual convexity we will replac
the line joining two points, which can be seen as the solution of the second-order
ential equationx′′ = 0, by a particular class of continuous arcs, namely, the solutions
second-order differential equationx′′ = Γ (t, x, x′) joining them.

As it is well known, the gradient operator of a differentiable convex functio
monotone. In this sense, monotonicity can be seen as a natural generalization
convexity concept. Therefore, we also define the monotonicity concept with resp
a differential equation as a natural and logical extension of the convexity concep
respect to a differential equation.

The organization of the paper is as follows: in Section 1.1, we list some basic not
and terminology used in this presentation. In Section 2 we state the main properties
convex function used, we present the second-order ordinary differential equation em
in all sections and a hypothesis on it. In Section 3, we define a convex set with respe
differential equation and give some examples. In Section 4, we define the class of
function with respect to a differential equation, prove some properties of this clas
present some examples. We state the characterization by first- and second-order co
of convex functions with respect to a differential equation in Section 4.1 and give its
cations. In Section 4.2 we obtain a sufficient optimality condition for a convex optimiz
problem with respect to a differential equation. In Section 5 we define monotone ope
with respect to a differential equation, give a characterization and present some exa
We conclude this paper by making some general comments about the existence of
function with respect to a differential equation, in Section 6.

1.1. Notation and terminology

We will use the following notation throughout this paper. The positive orthant o
n-dimensional Euclidean spaceRn is denoted byRn++ = {(x1, . . . , xn) ∈ R

n: xj > 0,
j = 1, . . . , n} and the Euclidean norm by‖ · ‖. The set of all symmetricn × n matrices
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is denoted bySn and bySn++ the cone of positive definiten × n symmetric matrices. Th
trace ofX = (xij ) ∈ Sn is denoted by trX = ∑n

i=1 xii . The inner product betweenX andY

in Sn is denoted by〈X,Y 〉 = tr(XY) and the Euclidean norm ofX by ‖X‖ = (〈X,X〉)1/2.
The gradient vector and the Hessian matrix of the real functionf :Ω → R are denoted by
∇f and∇2f, respectively, whereΩ denotes a open set inRn. T ′ denotes the Jacobia
matrix of the operatorT :Ω → R

n.

2. Preliminaries

In this section we recall the main properties of convex function used throughou
paper. They can be found in many introductory books on convexity, for example [1] an
Also, the class of second-order differential equation, whose solutions play an imp
rule in this paper, will be focused on.

Let C be a convex set ofD ⊂ R
n. A functionf : D → R is said to beconvexin C when

f
(
tx + (1− t)y

)
� tf (x) + (1− t)f (y), (1)

for all x, y ∈ C, t ∈ (0,1). It is said to bestrictly convexwhen strict inequality holds in (1
if x 	= y.

Proposition 2.0.1. A functionf is convex(respectively strictly convex) in C if and only if,
for all x ∈ C andv ∈ R

n, the functionϕ : IC → R defined by

ϕ(t) = f (x + tv), (2)

is convex(respectively strictly convex), whereIC = {t ∈ R: x + tv ∈ C}.

Proof. See [1] or [8]. �
Proposition 2.0.2. Letϕ be a differentiable function on an open intervalI ⊂ R. Then

(i) ϕ is convex inI if and only ifϕ(t) � ϕ(t̄) + ϕ′(t̄)(t − t̄ ) for all t, t̄ ∈ I ;
(ii) ϕ is strictly convex onI if and only ifϕ(t) > ϕ(t̄) + ϕ′(t̄)(t − t̄ ), for all t, t̄ ∈ I with

t 	= t̄ ;
(iii) ϕ is convex(respectively strictly convex) on I if and only ifϕ′ is monotone(respec-

tively strictly monotone) non-decreasing inI .

Furthermore, ifϕ is twice differentiable inI then

(iv) ϕ is convex inI if and only ifϕ′′(t) � 0, for all t ∈ I ;
(v) if ϕ′′(t) > 0 for all t ∈ I , thenϕ is strictly convex inI .

Proof. See [1] or [8]. �
Note that Proposition 2.0.1 emphasises that convexity is essentially a one-dimen

concept, since it reduces to convexity on the straight line. We will explore this idea
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next section by expanding the convexity concept. In order to generalize this idea, w
have to fix the continuous arcs, which will replace the straight lines, that is to sa
solutions of a second-order ordinary differential equation.

Let Γ : I × Ω × R
n → R

n be a continuous function, where intervalI ⊂ R andΩ ⊂ R
n

are open sets. Consider the second-order differential equation

x′′ = Γ (t, x, x′). (3)

Throughout this paper, we assume that the following two conditions hold:

(A1) to each(t0, x0, v0) ∈ I × Ω × R
n, there is a unique solutionγ to (3) defined inI

such that

γ (t0) = x0, γ ′(t0) = v0 and γ (t) ∈ Ω for all t ∈ I ;
(A2) given two distinct points belonging toΩ there is a unique solution to (3) throug

these points.

A solutionγ to (3) is said to be atrivial solution if γ (t) = x0 for all t ∈ I . From now on
γ denotes a non-trivial solution. Equation (3) is said to beregular if for each (non-trivial)
solutionγ there holdsγ ′(t) 	= 0 for all t ∈ I .

3. Convex set with respect to a differential equation

In this section we present the definition of a convex set with respect to a differ
equation, some examples and one of its basic properties.

Definition 3.1. The setC ⊂ Ω is said to be convex, with respect to the differential eq
tion (3), if for arbitrary pointsx andy in C and the solutionγ of (3) passing through thes
points the segment ofγ joining them is contained inC.

Let C be a subset ofRn. It easy to see that the setC is convex (in the usual sense)
and only if it is convex with respect to the differential equationx′′ = 0. From now on we
say that the setC is convexto mean convex with respect tox′′ = 0, and shortlyΓ -convex
to mean convex with respect to (3). Note that by assumption (A2) the setΩ is aΓ -convex
set.

Example 3.1. The setC = {(x1, x2) ∈ R
2: 100(x2 − x2

1)2 + (1− x1)
2 � 1} is not convex,

but is convex with respect to{
x′′

1 = 0;
x′′

2 = 2(x′
1)

2.
(4)

Indeed, takingp0 = (0,0), p1 = (1,1) ∈ C, we see that the segment{(1− t)p0 + tp1: 0�
t � 1} through them is not contained inC since(1/2,1/2) /∈ C, so implying thatC is not
convex. Now, for eachp = (a1, a2) andv = (v1, v2) in R

2 the curveγ :R → R
2 defined

by

γ (t) = (
v1t + a1, v

2t2 + v2t + a2
)
, (5)
1
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is the unique solution to (4) inR2 such thatγ (0) = p andγ ′(0) = v. Takeq = (b1, b2)

in R
2. Lettingv1 = b1 − a1 andv2 = (b2 − a2 − (b1 − a1)

2) Eq. (5) becomes

γ (t) = (
(b1 − a1)t + a1, (b1 − a1)

2t2 + (
b2 − a2 − (b1 − a1)

2)t + a2
)
,

and satisfiesγ (0) = p andγ (1) = q. Now it is easy to prove that ifp andq are inC, then
γ (t) ∈ C for all 0� t � 1. Consequently,C is convex with respect to (4). The fact thatC is
convex with respect to (4) can also be seen from Proposition 4.0.5 and Example 4.1

Example 3.2. The setRn++ is convex with respect to

x′′ = diag
(
x1

−1, . . . , xn
−1)x′2, (6)

wherex′2 = (x′2
1 , . . . , x′2

n )T . Indeed, takep = (p1, . . . , pn) andq = (q1, . . . , qn) in R
n++.

First note that, for eachv = (v1, . . . , vn) ∈ R
n, the curveγv(.,p) :R → R

n++ defined by

γv(t,p) = (
p1e

(v1/p1)t , . . . , pne
(vn/pn)t

)
, (7)

is the unique solution to (6) inRn++, such thatγ (0,p) = p andγ ′(0,p) = v. Now, substi-
tuting

v = (
p1 ln

(
p−1

1 q1
)
, . . . , pn ln

(
p−1

n qn

))
,

in (7), we obtain thatγv(t,p) = (p1−t
1 qt

1, . . . , p
1−t
n qt

n) is in R
2++, for all t ∈ R, and satisfies

γv(0,p) = p andγv(1,p) = q, see [15]. Accordingly, the statement follows.

Example 3.3. The setSn++ is convex with respect to

X′′ = X′X−1X′. (8)

First, observe that takingX ∈ Sn++ andV ∈ Sn, the curveγV (.,X) : R → Sn++ defined by

γV (t,X) = X1/2et(X−1/2V X−1/2)X1/2, (9)

is the unique solution to (8) inSn++ such thatγV (0,X) = X andγ ′
V (0,X) = V , see [15].

Now, takingY ∈ Sn++ and letting

V = X1/2 ln
(
X−1/2YX−1/2)X1/2

in (9), we obtain thatγV (t,X) = X1/2(X−1/2YX−1/2)tX1/2 is in Sn++, for all t ∈ R, and
it passes throughX andY , i.e.,γV (0,X) = X andγV (1,X) = Y , hence the statement
established.

Proposition 3.0.3. Let {Cj }j∈J be an arbitrary family ofΓ -convex sets. Then the interse
tion setC = ⋂{Cj : j ∈ J } is Γ -convex.

Proof. Immediate. �
Remark 3.0.1. It follows from [15] that for a certain class of convex setsC with self-
concordant barrier defined on its interiors, a second-order ordinary differential equati
be derived such thatC is convex with respect to that equation. There are many exam
in [15], which allow us to construct many others examples of convex sets and c
functions in our context.
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4. Convex function with respect to a differential equation

In this section we present the definition of a convex function with respect to a differ
equation, as well as a number of examples and basic properties. Specifically, w
first- and second-order characterizations of such functions and give some applicatio
example, we obtain a sufficient optimality condition for convex optimization problem
respect to a differential equation.

Definition 4.1. Let C ⊂ Ω be aΓ -convex set. The functionf :Ω → R is said to be conve
(respectively strictly convex) inC with respect to (3) or shortlyΓ -convex(respectively
strictly Γ -convex) in C if, for each solutionγ of (3), the composite functionf ◦γ : IC → R

is convex (respectively strictly convex), whereIC = {t ∈ I : γ (t) ∈ C}.

It easy to see, from Proposition 2.0.1, that convexity (in the usual sense) is equ
to convexity with respect tox′′ = 0. From now on we say thatf is convex to mean conve
with respect tox′′ = 0, andΓ -convex to mean convex with respect to (3).

Proposition 4.0.4. Let C ⊂ Ω be aΓ -convex set. Iff,f1, . . . , fn :Ω → R are Γ -convex
in C, then the following statements hold:

(i) the functionkf is Γ -convex inC, for each real numberk � 0;
(ii) the functionf1 + · · · + fn is Γ -convex inC.

Proof. Immediate. �
Proposition 4.0.5. Let C ⊂ Ω be aΓ -convex set and letr ∈ R. If f :Ω → R is Γ -convex
in C thenCr = {x ∈ C: f (x) � r} is Γ -convex.

Proof. Givenx andy in Cr , take the solutionγ to (3) such thatγ (t1) = x andγ (t2) = y.
Suppose thatt1 < t2. Given t1 < t < t2, if we let s = (t − t1)/(t2 − t1) we havet =
(1 − s)t1 + st2 and 0< s < 1. Thus, sincef ◦ γ is convex,f (γ (t1)) = f (x) � r and
f (γ (t2)) = f (y) � r , we obtain

f
(
γ (t)

) = f
(
γ
(
(1− s)t1 + st2

))
� (1− s)f

(
γ (t1)

) + sf
(
γ (t2)

)
� (1− s)r + sr = r.

The implication is thatγ (t) ∈ Cr , for all t1 � t � t2. As a resultCr is Γ -convex. �
Proposition 4.0.6. LetC ⊂ Ω be aΓ -convex set. Thenf :Ω → R is Γ -convex inC if and
only if the epigraphepi(f ) = {(x, r) ∈ C × R: f (x) � r}, is (Γ,0)-convex, i.e., conve
with respect to{

x′′ = Γ (t, x, x′);
r ′′ = 0.

(10)

Proof. Let (x1, r1), (x2, r2) ∈ epi(f ) and letβ(t) = (γ (t), α(t)) be the solution to (10
through them. Suppose thatβ(t1) = (x1, r1) andβ(t2) = (x2, r2), with t1 < t2. Henceγ
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is a solution tox′′ = Γ (t, x, x′) with γ (t1) = x1, γ (t2) = x2 andα(t) = (1 − s)r1 + sr2,
where s = (t − t1)/(t2 − t1). Now, sincef ◦ γ is convex,f (γ (t1)) = f (x1) � r1 and
f (γ (t2)) = f (x2) � r2, we obtain

f
(
γ (t)

) = f
(
γ
(
(1− s)t1 + st2

))
� (1− s)f

(
γ (t1)

) + sf
(
γ (t2)

)
� (1− s)r1 + sr2 = α(t),

for all t1 � t � t2. That signifies thatβ(t) = (γ (t), α(t)) ∈ epi(f ), for all t1 � t � t2, so
epi(f ) is (Γ,0)-convex.

Conversely, letγ be a the solution tox′′ = Γ (t, x, x′) and let t1, t2 ∈ IC = {t ∈ R:
γ (t) ∈ C}, supposet1 < t2. Setr1 = f (γ (t1)), r2 = f (γ (t2)) andα(t) = (1 − s)r1 + sr2,
wheres = (t − t1)/(t2− t1). As a consequence, since(x1, r1) and(x2, r2) are in epi(f ), the
curveβ(t) = (γ (t), α(t)) is the solution to (10) through them and epi(f ) is (Γ,0)-convex,
we have

f ◦ γ
(
(1− λ)t1 + λt2)

)
� α

(
(1− λ)t1 + λt2

) = (1− λ)r1 + λr2

= (1− λ)f ◦ γ (t1) + λf ◦ γ (t2),

for all 0� λ � 1. Hencef ◦ γ is convex inIC which implies thatf is Γ -convex inC. �
Corollary 4.0.1. Let C ⊂ Ω be a Γ -convex set and letJ be a arbitrary index set. I
fj :Ω → R is a Γ -convex function inC for each j ∈ J . Then the functionf :Ω →
R ∪ {+∞} defined byf (x) = sup{fj (x): j ∈ J } is Γ -convex inC.

Proof. The statement follows from Propositions 4.0.6 and 3.0.3.�
Proposition 4.0.7. LetC ⊂ Ω be aΓ -convex set and letf :Ω → R be aΓ -convex function
in C. Then the following statements hold:

(i) every local minimizer off in C is a global minimizer;
(ii) the minimizer set off is aΓ -convex set;

(iii) if f is strictlyΓ -convex inC then there exists at most one minimizer off in C.

Proof. For (i), suppose thatx∗ is a local minimizer forf in C. Then there existsr > 0
such thatf (x∗) � f (x), for all x ∈ B(x∗, r), whereB(x∗, r) = {x ∈ C: ‖x − x∗‖ < r}.
Let y ∈ C. We are going to prove thatf (x∗) � f (y). Take the solutionγ to (3) such
that γ (t1) = x∗, γ (t2) = y and t1 < t2. Let 0< t̄ < 1 such thatγ (t̂ ) ∈ B(x∗, r), where
t̂ = (1− t̄ )t1 + t̄ t2. Now, sincef (x∗) � f (x) for all x ∈ B(x∗, r), andf is Γ -convex we
have

f (x∗) � f
(
γ (t̂ )

)
� (1− t̄ )f (x∗) + t̄f (y) = f (x∗) + t̄

(
f (y) − f (x∗)

)
, (11)

implying thatf (x∗) � f (y) becausēt > 0. So (i) is proved.
For (ii), let x∗ a minimizer off in C. Thus, it follows from (i) that the minimizer set o

f is Cr∗ = {x ∈ C: f (x) � r∗}, wherer∗ = f (x∗). Now, from Proposition 4.0.5 we hav
thatCr∗

is Γ -convex and the statement (i) is proved.
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For (iii), note that ifx∗ is a minimizer off in C then, for ally ∈ C, the second in
equality in (11) is strict whenevery 	= x∗ sincef is strictly Γ -convex. Consequently
f (x∗) < f (x∗) + t̄ (f (y) − f (x∗)) which impliesf (x∗) < f (y), becausēt > 0. Hence,
from item (i), the statement follows.�
Example 4.1. Let the Rosenbrock’s functionf :R2 → R be given byf (x1, x2) =
100(x2 − x2

1)2 + (1− x1)
2. It is not hard to see from (5) that, for each solutionγ to (4), the

functionf ◦ γ is a strictly convex quadratic function. Note that from Proposition 4.0.5
setCr = {(x1, x2) ∈ R

2: f (x1, x2) � r} is convex with respect to (4) for allr � 0. Now, it
was shown in Example 3.1 that the sub-level setC1 is not convex implying thatf is not
convex.

Example 4.2. Let f :R2++ → R be defined byf (x1, x2) = ln2(x1) + ln2(x2). Clearly, the
functionf is not convex. Now,f is strictly convex with respect to (6) withn = 2. Indeed,
since for each solutionγ to (6) we obtain from (7) thatf ◦ γ is a strictly convex quadrati
function.

Example 4.3. Letf :Sn++ → R be defined byf (X) = | lndetX|. To establish the convexit

of f with respect to (8), first note that for eachγ (t) = X1/2et(X−1/2V X−1/2)X1/2, where
X ∈ Sn++ andV ∈ Sn, a solution of (8) there holds

f ◦ γ (t) = ∣∣lndet
(
X1/2et(X−1/2V X−1/2)X1/2)∣∣

= ∣∣lndet(X) + lndet
(
et(X−1/2V X−1/2)

)∣∣
= ∣∣lndet(X) + ln

(
etr

(
tX−1/2V X−1/2))∣∣

= ∣∣lndet(X) + tr
(
X−1/2V X−1/2)t∣∣.

This implies thatf ◦ γ is convex for each solutionγ to (8), sof is convex with respec
to (8). Now it is easy to see thatf is not convex; for example, observe the one-dimensi
casef (x) = | lnx|.

Definition 4.2. Let Γ1 : I × Ω1 × R
n → R

n andΓ2 : I × Ω2 × R
n → R

n be continuous
functions. The differential equations

x′′ = Γ1(t, x, x′), (E1)

x′′ = Γ2(t, x, x′), (E2)

are said to be conjugated by the diffeomorphismΦ : Ω1 → Ω2 if, for each solutionγ of
(E2), there exists a solutionβ of (E1) such thatγ = Φ ◦ β.

Note that if(E1) and(E2) are conjugated by the diffeomorphismΦ :Ω1 → Ω2, then
they also are conjugated by the diffeomorphismΦ−1 :Ω2 → Ω1.

Proposition 4.0.8. Let C1 ⊂ Ω1 andC2 ⊂ Ω2 beΓ1-convex andΓ2-convex sets, respe
tively. Suppose that(E1) and (E2) are conjugated byΦ :Ω1 → Ω2 and Φ(C1) ⊂ C2.
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Thenf :C2 → R is Γ2-convex if and only ifg :C1 → R defined byg(x) = f (Φ(x)) is
Γ1-convex.

Proof. We will prove only one part since the other one is similar. Suppose thatf is Γ2-
convex. Letβ be a solution to(E1). We are going to proveg ◦ β is convex. As(E1)

and (E2) are conjugated byΦ−1 :Ω2 → Ω1, there exist a solutionγ for (E2) such that
β = Φ−1 ◦ γ . Henceg ◦ β = f ◦ Φ ◦ Φ−1 ◦ γ = f ◦ γ and the statement follows.�
Example 4.4. The non-convex functionf :R2++ → R defined byf (p1,p2) = ln2(p1p

−1/2
2 )

is convex with respect to (6). In fact, first we have that (6) is conjugated tox′′ = 0 by
Φ :R2 → R

2++ defined byΦ(x1, x2) = (ex1, ex2). Settingg(x1, x2) = (x1 − (1/2)x2)
2 we

achieveg(x) = f (Φ(x)). Sinceg is convex the statement follows from Proposition 4.0

Example 4.5. The polynomialf :Rn++ → R defined by

f (p1, . . . , pn) =
m∑

i=1

ci

n∏
j=1

p
bij

j ,

whereci ∈ R++ andbij ∈ R is convex with respect to (6). Actually, first we have that (6
conjugated tox′′ = 0 byΦ :Rn → R

n++ defined byΦ(x1, . . . , xn) = (ex1, . . . , exn). Letting
g = f ◦ Φ, direct calculations yield

g(x1, . . . , xn) =
m∑

i=1

cie
∑n

j=1 bij xj .

So, sinceg is convex we obtain the statement from Proposition 4.0.8.

Example 4.6. Now, from Proposition 4.0.8 we can also perceive that Rosenbrock’s
tion f , defined in Example 4.1, is convex with respect to (4). To see it, first note th
is conjugated tox′′ = 0 by Φ :R2 → R

2 defined byΦ(x1, x2) = (x1, x
2
1 − x2). Setting

g(x1, x2) = 100x2
2 + (1 − x1)

2, we haveg(x1, x2) = f (Φ(x1, x2)). Sinceg = f ◦ Φ is
convex, we obtain from Proposition 4.0.8 thatf is convex with respect to (4).

4.1. Characterizations of convexity

Proposition 4.1.1. Let f :Ω → R be a differentiable function and letC ⊂ Ω a Γ -convex
set. Thenf is Γ -convex inC if and only if, for each̄x ∈ C and each non-trivial solutionγ
of (3) throughx̄,

f
(
γ (t)

)
� f (x̄) + 〈∇f (x̄), γ ′(t̄)

〉
(t − t̄ ), (12)

for all t ∈ IC = {t ∈ R: γ (t) ∈ C}, whereγ (t̄) = x̄. Furthermore,f is strictlyΓ -convex in
C if and only if strict inequality in(12)holds always for̄t 	= t .

Proof. Let x̄ ∈ C. Take a solutionγ of (3) such thatγ (t̄) = x̄. Sincef is Γ -convex,
we have thatf ◦ γ is convex. Thus, from Proposition 2.0.2(i) we obtain thatf ◦ γ (t) �
f ◦ γ (t̄) + (f ◦ γ )′(t̄)(t − t̄ ), for all t ∈ IC . And that implies (12).
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For the converse, letγ be a solution of (3) and let̄t ∈ IC be such thatγ (t̄) = x̄.
Since (12) holds all̄x ∈ C andt ∈ IC , we obtain thatf ◦γ (t) � f ◦γ (t̄)+(f ◦γ )′(t̄)(t − t̄ ),
for all t, t̄ ∈ IC . Thus, from Proposition 2.0.2(i), we have thatf ◦ γ is convex, for all solu-
tion γ of (3). That being so,f is Γ -convex inC. For the second part, we use an analog
argument and Proposition 2.0.2(ii).�
Corollary 4.1.1. Letf :Ω → R be a differentiable function and letC ⊂ Ω be aΓ -convex
set. Iff is Γ -convex inC then each critical point off in C is a global minimizer inC.
Furthermore, iff is strictly Γ -convex inC, then any critical point off in C is a strict
global minimizer inC.

Proof. Suppose thatx∗ ∈ C is a critical point off . Let x ∈ C. Take the solutionγ of (3)
such thatγ (t̄) = x∗ andγ (t) = x. Since∇f (x∗) = 0, it follows from Proposition 4.1.1 tha
f (x) � f (x∗). Therefore, we can conclude thatx∗ is the global minimizer off . For the
second part, we use an analogous argument and the second part of Proposition 4.1�
Proposition 4.1.2. Let f :Ω → R be a twice differentiable function and letC ⊂ Ω be a
Γ -convex set. Thenf is Γ -convex inC if and only if there holds〈∇2f (x)v, v

〉 + 〈∇f (x),Γ (t, x, v)
〉
� 0, (13)

for all (t, x, v) ∈ I × C × R
n. Furthermore, if forv 	= 0 the strict inequality in(13) holds

and (3) is regular thenf is strictlyΓ -convex.

Proof. Taking a solutionγ of (3), we have from direct calculation that

(f ◦ γ )′′(t) = 〈∇2f
(
γ (t)

)
γ ′(t), γ ′(t)

〉 + 〈∇f
(
γ (t)

)
,Γ

(
t, γ (t), γ ′(t)

)〉
, (14)

for all t ∈ I . Now, since (13) holds for all(t, x, v) ∈ I × C × R
n, we have from (14) tha

(f ◦γ )′′(t) � 0, for all t ∈ IC = {t ∈ I : γ (t) ∈ C}. This implies from Proposition 2.0.2(iv
thatf ◦ γ is convex inIC and so we obtain thatf is Γ -convex inC.

Conversely, given(t, x, v) ∈ I ×C ×R take the solutionγ of (3) such thatγ (t) = x and
γ ′(t) = v. As f is Γ -convex inC, we have thatf ◦ γ is convex inIC . Hence, it follows
from Proposition 2.0.2(iii) that(f ◦ γ )′′(t) � 0, for all t ∈ IC = {t ∈ I : γ (t) ∈ C}. Thus,
sinceγ (t) = x andγ ′(t) = v we have from (14) that (13) holds. For the second part
use an analogous argument and Proposition 2.0.2(v), sinceγ ′(t) 	= 0 for all t ∈ I . �

Now, if x∗ is a critical point of the twice differentiableΓ -convex functionf , then
the inequality (13) implies that∇2f (x∗) is positive semi-definite. Thus all critical poin
satisfy the second-order necessary conditions to be local minimizers. In fact, it fo
from Corollary 4.1.1 that it is a global minimizer. Note that whenΓ (t, x, v) ≡ 0, Proposi-
tion 4.1.2 is a usual second-order characterization of convexity.

Example 4.7. The functionf :Sn++ → R defined byf (X) = detX−1 + detX1/2 is con-
vex with respect to (8). In fact, we haveΓ (t,X,V ) = V X−1V , ∇f (X) = (−detX−1 +
(1/2)detX1/2)X−1 and
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∇2f (X)V = (
detX−1 + (1/4)detX1/2)〈X−1,V

〉
X−1

− (−detX−1 + (1/2)detX1/2)X−1V X−1.

Then, by substituting in (13) direct calculations yield
〈∇2f (X)V,V

〉 + 〈∇f (X),Γ (t,X,V )
〉

= (
detX−1 + (1/4)detX1/2)(〈X−1,V

〉)2 � 0,

for all X ∈ Sn++, V ∈ Sn. Therefore, from Proposition 4.1.2 it follows that the functionf

is convex with respect to (8). Now,f is not convex, for example looking in one-dimensi
f (x) = x−1 + x1/2 and the statement becomes immediate.

Corollary 4.1.2. Let Ψ : I × Ω → R
n be a continuous function, where intervalI ⊂ R

and Ω ⊂ R
n are open. Suppose thatC ⊂ Ω is convex with respect tox′′ = Ψ (t, x)

and f :Ω → R is a twice differentiable function. Iff is Ψ -convex inC, then〈∇f (x),

Ψ (t, x)〉 � 0, for all (t, x) ∈ I × C. Furthermore, iff is convex and〈∇f (x),Ψ (t, x)〉 � 0
for all (t, x) ∈ I × C, thenf is Ψ -convex.

Proof. From Proposition 4.1.2 we have〈∇2f (x)v, v〉 + 〈∇f (x),Ψ (t, x)〉 � 0, for all
(t, x, v) ∈ I × C × R

n, sincef is Ψ -convex. Lettingv = 0 in the last inequality, we ob
tain that〈∇f (x),Ψ (t, x)〉 � 0, for all (t, x) ∈ I × C. Now, the second statement follow
from Proposition 4.1.2 and by noting that iff is convex, then〈∇2f (x)v, v〉 � 0 for all
(x, v) ∈ C × R

n. �
Corollary 4.1.3. Let I ∈ R be a open interval and letΛ : I → R be a continuous function
The functionf : I → R is convex with respect to

x′′ = Λ(x)(x′)2
, (15)

if and only iff ′′(x) + Λ(x)f ′(x) � 0, for all x ∈ I .

Proof. It follows from Proposition 4.1.2. �
Example 4.8. Letting Λ(x) ≡ −1 andI = R in Corollary 4.1.3, we can check that th
functionsf1(x) = e−x , f2(x) = cosh(x), f3(x) = xex andf4(x) = −x3 − 4x are convex
with respect to (15).

Example 4.9. Letting Λ(x) ≡ − tan(x) andI = (−π/2,π/2) in Corollary 4.1.3, we can
check that the functionsf5(x) = ln(sec(x) + tan(x)), f6(x) = ln2(cos(x)) andf7(x) =
sec(x) − ln(cos(x)) are convex with respect to (15).

Corollary 4.1.4. Let C ⊂ Ω be aΓ -convex set. Letf :Ω → R and ϕ :J → R be twice
differentiable functions, whereIm(f ) ⊂ J . Suppose thatϕ is monotone increasing, i.e
ϕ′ > 0, thenϕ ◦ f is Γ -convex inC if and only if

〈∇2f (x)v, v
〉 + 〈∇f (x),Γ (t, x, v)

〉
� −ϕ′′(f (x))

′
〈∇f (x), v

〉2
, (16)
ϕ (f (x))
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for all (t, x, v) ∈ I × C × R
n. Furthermore, the following statements hold:

(i) if ϕ′′ � 0, thenf is Γ -convex inC;
(ii) if ϕ′′ � 0 andf is Γ -convex inC, thenϕ ◦ f is Γ -convex inC.

Proof. All the following equations and inequalities are valid for all(t, x, v) ∈ I ×C ×R
n.

Letting g = ϕ ◦ f , we have that∇g = (ϕ′ ◦ f )∇f and∇2g = (ϕ′′ ◦ f )∇f ∇f T + (ϕ′ ◦
f )∇2f . Thus〈∇2gv, v

〉 + 〈∇g,Γ 〉 = (ϕ′′ ◦ f )〈∇f, v〉2 + (ϕ′ ◦ f )
(〈∇2f v, v

〉 + 〈∇f,Γ 〉). (17)

Thus, from (17) and Proposition 4.1.2 it follow thatg = ϕ ◦ f is Γ -convex if and only if

(ϕ′′ ◦ f )〈∇f, v〉2 + (ϕ′ ◦ f )
(〈∇2f v, v

〉 + 〈∇f,Γ 〉) � 0,

and asϕ′ > 0 this last inequality is equivalent to (16).
For (i). Note that the right-hand side of (16) is non-negative, sinceϕ′ > 0 andϕ′′ � 0.

This implies 〈∇2f v, v〉 + 〈∇f,Γ 〉 � 0 and the conclusion is obtained from Propo
tion 4.1.2.

For (ii). Sinceϕ′ > 0, ϕ′′ � 0 andf is Γ -convex inC we have from (17) and Propo
sition 4.1.2 that〈∇2g v, v〉 + 〈∇g,Γ 〉 � 0, which implies from Proposition 4.1.2 th
g = ϕ ◦ f is Γ -convex inC and the proof is complete.�

Let C ⊂ Ω be aΓ -convex set and letf :Ω → R. The functionf is said to belogarith-
mically convex with respect to(3) in C, or shortlylogarithmicallyΓ -convexin C, if f > 0
in C and lnf is Γ -convex inC.

Corollary 4.1.5. Let C ⊂ Ω be aΓ -convex set and letf :Ω → R a twice differentiable
function. The functionf is logarithmicallyΓ -convex inC if and only if

〈∇2f (x)v, v
〉 + 〈∇f (x),Γ (t, x, v)

〉
� 1

f (x)

〈∇f (x), v
〉2

, (18)

for all (t, x, v) ∈ I × C × R
n. As a consequence, iff is logarithmicallyΓ -convex thenf

is Γ -convex.

Proof. Let ϕ(t) = ln(t) in Corollary 4.1.4. The result follows from Corollary 4.1.4(i) no
ing thatϕ′(t) = 1/t > 0, ϕ′′(t) = −1/t2 < 0 resulting

−ϕ′′(f (x))

ϕ′(f (x))
= 1

f (x)
> 0,

and hence (17) yields (18).�
Example 4.10. The function det−1 :Sn++ → R is convex with respect to (8). Indeed, it
clear thatG :Sn++ → R defined byG(X) = lndet−1(X) is convex with respect to (8) usin
an argument analogous to that in Example 4.3 and the conclusion follows from C
lary 4.1.5.
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4.2. Sufficient optimality conditions for optimization problem

Let C ⊂ Ω be aΓ -convex set and letf :Ω → R be a differentiableΓ -convex function
in C. Consider the followingΓ -convex nonlinear programming problem

(P )
{

minf (x)

s.t.x ∈ C.

Proposition 4.2.1. A point x∗ ∈ C is a solution to(P ) if for each pointx ∈ C we have
that 〈∇f (x∗), γ ′

x∗x(t
∗)〉 � 0, whereγx∗x is the solution to(3) such thatγx∗x(t∗) = x∗ and

γx∗x(t̄) = x with t∗ < t̄ .

Proof. Let x∗ ∈ C be a solution to(P ) andx ∈ C. We are going to show thatf (x∗) �
f (x). Take the solutionγx∗x to (3) such thatγx∗x(t∗) = x∗ andγx∗x(t̄) = x . Now, sincef
is Γ -convex, we have from Proposition 4.1.1 that

f (x) = f
(
γx∗x(t̄)

)
� f (x∗) + 〈∇f (x∗), γ ′

x∗x(t
∗)

〉
(t̄ − t∗),

and as〈∇f (x∗), γ ′
x∗x(t

∗)〉 � 0 andt̄ − t∗ > 0, the conclusion follows. �
Proposition 4.2.2 (KKT sufficient optimality condition). Let Ω be an openΓ -convex
set. Letf,g :Ω → R

m be given, whereg = (g1, . . . , gm) and f,gi :Ω → R are dif-
ferentiable for i = 1, . . . ,m. Suppose thatf,gi :Ω → R are Γ -convex functions fo
i = 1, . . . ,m and x∗ is a feasible point to(P ) with C = {x ∈ R

n: g(x) � 0}. If there
existµ = (µ1, . . . ,µm) ∈ R

m such that

∇f (x∗) +
m∑

i=1

µi∇gi(x
∗) = 0, µ � 0, and

〈
µ,g(x∗)

〉 = 0, (19)

thenx∗ is a solution to(P).

Proof. First note that, iff,gi :Ω → R are Γ -convex functions, fori = 1, . . . ,m, and
µ � 0, then we have from Proposition 4.0.4 thath :Ω → R defined byh(x) = f (x) +
〈µ,g(x)〉 is Γ -convex. Note that

f (x) � h(x) for all x ∈ C. (20)

Now from the first equality in (19) we obtain that∇h(x∗) = 0 and asx∗ is in C it follows
from Corollary 4.1.1 thatx∗ is a minimizer forh in C. Thus, from (20) and the secon
equality in (19) we have that

f (x) � h(x) � h(x∗) = f (x∗),
for all x ∈ C, and the proposition is proved.�

5. Monotone operators with respect to a differential equation

In this section we define the monotone operators with respect to a differential equ
give a characterization and present some examples. In particular, we state that eac
entiable functionf is Γ -convex if and only if the gradient operator∇f is Γ -monotone.
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Definition 5.1. Let C ⊂ R
n be aΓ -convex set. The operatorT :Ω → R

n is said to be
monotone with respect to the differential equation (3) inC or shortlyΓ -monotonein C

when, for each solutionγ of (3), the real functionψ(T,γ ) : IC → R defined by

ψ(T,γ )(t) = 〈
T

(
γ (t)

)
, γ ′(t)

〉
,

is monotone (non-decreasing), whereIC = {t ∈ I : γ (t) ∈ C}. In particular, whenψ(T,γ ) is
strictly monotone, for allγ , we say thatT is strictly Γ -monotonein C.

Note thatT is monotone (in the usual sense) if it is monotone with respect to the d
ential equationx′′ = 0.

Example 5.1. The operatorT :Rn++ → R
2 defined by

T (x1, . . . , xn) = (
x−1

1 ln(x1), . . . , x
−1
n ln(xn)

)
is not monotone, but it is monotone with respect to (6). Actually, direct calculation sh

ψ(T,γ )(t) =
n∑

i=1

(
(vi/pi) ln(pi) + (vi/pi)

2t
)
,

for each solutionγ of (6). Thus, from the last equality we easily obtain thatψ(T,γ ) is
monotone and the statement follows.

Proposition 5.0.3. Let C ⊂ Ω be aΓ -convex set. The differentiable functionf :Ω → R

is Γ -convex(respectively strictlyΓ -convex) in C if and only if the gradient operato
∇f :Ω → R

n is Γ -monotone(respectively strictlyΓ -monotone) in C.

Proof. It follows from Proposition 2.0.2(iii) by noting that(f ◦ γ )′ = 〈∇f ◦ γ, γ ′〉 =
ψ(∇f,γ ) for all γ . �
Proposition 5.0.4. LetC ⊂ Ω be aΓ -convex set. The differentiable operatorT :Ω → R

n

is Γ -monotone inC if and only if〈
T ′(x)v, v

〉 + 〈
T (x),Γ (t, x, v)

〉
� 0, (21)

for all (t, x, v) ∈ I × C × R
n. Furthermore, if the strict inequality in(21) holds for all

v 	= 0, and(3) is regular thenT is strictlyΓ -monotone inC.

Proof. Taking a solutionγ of (3) we have by direct calculation that

ψ ′
(T ,γ )(t) = 〈

T ′(γ (t)
)
γ ′(t), γ ′(t)

〉 + 〈
T

(
γ (t)

)
,Γ

(
t, γ (t), γ ′(t)

)〉
(22)

for all t ∈ I . Now, given(t, x, v) ∈ I ×C × R
n, take a solutionγ of (3) such thatγ (t) = x

andγ ′(t) = v. If T is Γ -monotone to (3) inC, we have thatψ(T,γ ) is monotone inIC =
{t ∈ I : γ (t) ∈ C}, hence we haveψ ′

(T ,γ )(t) � 0, for all t ∈ IC which with (22) implies (21)
sinceγ (t) = x andγ ′(t) = v.

Conversely, take a solutionγ of (3). Since, for all(t, x, v) ∈ I ×C ×R
n Eq. (21) holds,

we have from (22) thatψ ′ (t) � 0, for all t ∈ IC . Thusψ(T,γ ) is monotone inIC , so
(T ,γ )
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implying thatT is Γ -monotone to (3) inC. The proof of the second part comes from
similar argument, sinceγ ′(t) 	= 0 for all t ∈ I . �
Example 5.2. The operatorT :Sn++ → Sn defined byT (X) = −X−2 + X−1, is strictly
monotone with respect to (8). Indeed, substitutingΓ (t,X,V ) = V X−1V , T (X) =
−X−2 + X−1 andT ′(X)V = X−2V X−1 + X−1V X−2 − X−1V X−1 in (21), we obtain,
after some algebraic manipulations, that

〈
T ′(X)V,V

〉 + 〈
T (X),Γ (t,X,V )

〉 = ∥∥X−1V X−1/2
∥∥2

> 0,

for all X ∈ Sn++, V ∈ Sn andV 	= 0. Therefore, from Proposition 5.0.4 it follows thatT is
strictly monotone inSn++ with respect to (8), since (8) is regular. For example, look at
one-dimension casef (x) = −x−2 + x−1 and it is easy to see thatT is not monotone.

6. Final remarks

Now we are going to state a consequence of the existence of a strictlyΓ -monotone
operator for the differential equation

x′′ = Γ (t, x, x′). (23)

First, note that iff is aΓ -convex function andγ is a periodic solution to (23) thenf ◦ γ

is constant. In the other words, if (23) has a periodic solution then there is no s
Γ -convex function for it. Now, as the monotonicity concept is in a certain sense a ge
ization of the convexity concept, a natural and logical consequence is that the existe
a strictlyΓ -monotone operator also imposes restrictions on the behavior of the sol
to (23).

Proposition 6.0.5. If a strictly Γ -monotone operator with respect to(23) exists, then any
periodic solution to(23) is trivial, i.e., it consists of a simple point.

Proof. Let T a strictly Γ -monotone operator. We derive a contradiction assuming
there is a nontrivial periodic solutionγ to (23). Sinceψ(T,γ ) is monotone andγ is a peri-
odic solution we have that it is constant, so implying thatT is not strictlyΓ -monotone and
that is a contradiction. As a result, there is no nontrivial periodic solution to (23).�
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