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Abstract

The concepts of convexity of a set, convexity of a function and monotonicity of an operator with
respect to a second-order ordinary differential equation are introduced in this paper. Several well-
known properties of usual convexity are derived in this context, in particular, a characterization of
convexity of function and monotonicity of an operator. A sufficient optimality condition for a op-
timization problem is obtained as an application. A number of examples of convex sets, convex
functions and monotone operators with respect to a differential equation are presented.
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1. Introduction

Convexity is essentially a one-dimensional concept, as it bases its definition on a line
joining two arbitrary points. This special property of convex functions allows its extension
to different settings. Works dealing with this topic include the ones by Avriel [1], Avriel
and Zang [2], Pini [12], Rapcséak [13] and Udriste [16]. One such topic was introduced by
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Ortega and Rheinboldt [10], who defined arcwise connectivity by replacing the line joining
two points by a continuous arc joining them. This idea has been investigated and further
extended for different reasons by many authors, see, for example: Avriel and Zang [2],
Kaul, Lyall and Kaur [9], Bhatia and Mehra [5], Suneja, Aggarwal and Davar [14], Davar
and Mehra [6] and Fu and Wang [7].

The concepts of convexity of functions and second-order differential equations were
used together for the first time by Peixoto [11] and as a particular notion of convexity
introduced by Beckenbach [3], see also Beckenbach and Bing [4]. The idea used in that
setting extended the convexity concept of a function by using a geometrical approach on
its epigraph. More specifically, since the convexity of a function is equivalent to the con-
vexity of its epigraph, the extension is obtained by substituting a line joining two points
in the epigraph by a curve, namely, a solution of a fixed second-order ordinary differential
equation.

In this paper we investigate a sub-class of functions of that introduced by Ortega and
Rheinboldt [10]. The aim is to bring together the ideas of both Peixoto [11] and Ortega and
Rheinboldt [10] and to explore its intrinsic uni-dimensional property. More specifically,
we will study the sets and the functions that are convex on solutions of a second-order
differential equationx” = I' (¢, x, x"). In the definition of usual convexity we will replace
the line joining two points, which can be seen as the solution of the second-order differ-
ential equationc” = 0, by a particular class of continuous arcs, namely, the solutions of a
second-order differential equatiafi = I' (¢, x, x’) joining them.

As it is well known, the gradient operator of a differentiable convex function is
monotone. In this sense, monotonicity can be seen as a natural generalization of the
convexity concept. Therefore, we also define the monotonicity concept with respect to
a differential equation as a natural and logical extension of the convexity concept with
respect to a differential equation.

The organization of the paper is as follows: in Section 1.1, we list some basic notations
and terminology used in this presentation. In Section 2 we state the main properties of the
convex function used, we present the second-order ordinary differential equation employed
in all sections and a hypothesis on it. In Section 3, we define a convex set with respect to a
differential equation and give some examples. In Section 4, we define the class of convex
function with respect to a differential equation, prove some properties of this class and
present some examples. We state the characterization by first- and second-order conditions
of convex functions with respect to a differential equation in Section 4.1 and give its appli-
cations. In Section 4.2 we obtain a sufficient optimality condition for a convex optimization
problem with respect to a differential equation. In Section 5 we define monotone operators
with respect to a differential equation, give a characterization and present some examples.
We conclude this paper by making some general comments about the existence of convex
function with respect to a differential equation, in Section 6.

1.1. Notation and terminology
We will use the following notation throughout this paper. The positive orthant of the

n-dimensional Euclidean spad®’ is denoted byR" {, = {(x1,...,x,) € R": x; > 0,
j=1,...,n} and the Euclidean norm by- ||. The set of all symmetria x » matrices



628 O.P. Ferreira / J. Math. Anal. Appl. 315 (2006) 626—641

is denoted bys" and byS'; | the cone of positive definite x n symmetric matrices. The
trace ofX = (x;;) € " is denoted by t = >/ ; x;;. The inner product betweetiandY

in $" is denoted by X, Y) = tr(XY) and the Euclidean norm df by || X| = (X, X))/2.
The gradient vector and the Hessian matrix of the real funcfiof® — R are denoted by
V f and V2, respectively, where2 denotes a open set IR”. T’ denotes the Jacobian
matrix of the operatof : 2 — R”".

2. Preliminaries

In this section we recall the main properties of convex function used throughout the
paper. They can be found in many introductory books on convexity, for example [1] and [8].
Also, the class of second-order differential equation, whose solutions play an important
rule in this paper, will be focused on.

Let C be a convex setab c R”. A function f : D — R is said to beconvexin C when

fltx+@=0y) <tf)+ A=) f(y). 1)

forallx,y € C,t € (0,1). Itis said to bestrictly convexwvhen strict inequality holds in (1)
if x£y.

Proposition 2.0.1. A function f is convexrespectively strictly convgsin C if and only if,
forall x € C andv € R", the functionp : I — R defined by

p) = f(x +1v), )

is conveXrespectively strictly convgxwherelc = {r e R: x +tv € C}.

Proof. See[1]or[8]. O

Proposition 2.0.2. Let ¢ be a differentiable function on an open intervat R. Then

(i) ¢isconvexinl ifand onlyife(r) > @) +¢' (@)t —1) forall t,7 € I;

(i) ¢ is strictly convex orl if and only ifg(z) > () + ¢’ (1) (t — 1), for all ¢, € I with
I

(iii) ¢ is convex(respectively strictly convéon I if and only if¢’ is monotongrespec-
tively strictly monotonenon-decreasing id.

Furthermore, ify is twice differentiable inf then

(iv) ¢ isconvexin/ if and only if”(z) >0, forall r € I;
(v) if ¢”(r) > 0forall ¢ € 1, theng is strictly convex in/.

Proof. See[1]or[8]. O

Note that Proposition 2.0.1 emphasises that convexity is essentially a one-dimensional
concept, since it reduces to convexity on the straight line. We will explore this idea in the
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next section by expanding the convexity concept. In order to generalize this idea, we first
have to fix the continuous arcs, which will replace the straight lines, that is to say, the
solutions of a second-order ordinary differential equation.

LetI": 1 x 2 x R* — R" be a continuous function, where intervat- R ands2 c R”
are open sets. Consider the second-order differential equation

x"=I@,x,x). (3)
Throughout this paper, we assume that the following two conditions hold:

(A1) to each(ro, x0, vo) € I x £2 x R", there is a unique solutiop to (3) defined in/
such that

v (to) = xo, y'(tg)=vo and y(@)e forallrel;

(A2) given two distinct points belonging t& there is a unique solution to (3) through
these points.

A solutiony to (3) is said to be &ivial solutionif y () = xo for all t € I. From now on
y denotes a non-trivial solution. Equation (3) is said tadspular if for each (hon-trivial)
solutiony there holds//(r) #0 forallz € 1.

3. Convex set with respect to a differential equation

In this section we present the definition of a convex set with respect to a differential
equation, some examples and one of its basic properties.

Definition 3.1. The setC C £2 is said to be convex, with respect to the differential equa-
tion (3), if for arbitrary pointst andy in C and the solutiory of (3) passing through these
points the segment gf joining them is contained ig'.

Let C be a subset oR”. It easy to see that the s€tis convex (in the usual sense) if
and only if it is convex with respect to the differential equatidh= 0. From now on we
say that the sef is convexto mean convex with respect id = 0, and shortlyI"-convex
to mean convex with respect to (3). Note that by assumption (A2) the $&t I"-convex
set.

Example 3.1. The setC = {(x1, x2) € R%: 100(x2 — x2)2 + (1 — x1)2 < 1} is not convex,
but is convex with respect to
x] =0

{ x5 = 2(x1)2. ()
Indeed, takingng = (0, 0), p1 = (1, 1) € C, we see that the segmeil — r) po + tp1: 0 <
t < 1} through them is not contained @ since(1/2, 1/2) ¢ C, so implying thatC is not
convex. Now, for eachy = (a1, ap) andv = (v1, v2) in R? the curvey : R — R? defined
by

y() = (vlt +aq, v%tz + vot + az), (5)
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is the unique solution to (4) ilR? such thaty (0) = p andy’(0) = v. Takeq = (b1, b2)
in R2. Letting vy = b1 — a1 andva = (b2 — az — (b1 — a1)?) Eq. (5) becomes

y(0) = ((b1 — a)t + ax, (b1 — a1)’t? + (b2 — az — (b1 — a1)?)t + az),

and satisfiey (0) = p andy (1) = ¢g. Now it is easy to prove that if andg are inC, then
y(t) € Cforall 0 < r < 1. Consequenth( is convex with respect to (4). The fact th@is
convex with respect to (4) can also be seen from Proposition 4.0.5 and Example 4.1 below.

Example 3.2. The setR”, , is convex with respect to
x" = diag(xfl, o x,fl)x/z, (6)

wherex'? = (x{2,...,x,2)T. Indeed, take» = (p1, ..., py) andg = (g1, ..., g,) INR" .
First note that, for each= (v1, ..., v,) € R", the curvey, (., p) :R — R’} , defined by

Vo (t, p) — (ple(vl/Pl)l, e pne(vn/pn)f)’ (7)

is the unique solution to (6) iR”_, , such that/ (0, p) = p andy’(0, p) = v. Now, substi-
tuting

v=(paIn(pytqr). ... paIn(p; ).
in (7), we obtain thay, (z, p) = (p%*‘qi, ..., p¥ighyisinR2_, forallt € R, and satisfies
1»(0, p) = p andy, (1, p) = q, see [15]. Accordingly, the statement follows.
Example 3.3. The setS’ , is convex with respect to
X' =x'x"1x'. (8)
First, observe that taking € S’} | andV e §", the curveyy (., X) : R — '}, defined by
wy(t, X) = Xl/Zet(X’1/2VX’1/2)X1/27 (9)

is the unique solution to (8) i’} | such thatyy (0, X) = X andy;, (0, X) =V, see [15].
Now, takingY € 8t , and letting

in (9), we obtain thayy (t, X) = XV2(x "2y x-1/2)' x¥/2isin s" ., for all € R, and
it passes througlX andY, i.e.,yy (0, X) = X andyy (1, X) =Y, hence the statement is
established.

Proposition 3.0.3. Let{C}} jc; be an arbitrary family ofl"-convex sets. Then the intersec-
tion setC = ({C;: j € J} is I'-convex.

Proof. Immediate. O

Remark 3.0.1. It follows from [15] that for a certain class of convex sétswith self-
concordant barrier defined on its interiors, a second-order ordinary differential equation can
be derived such that is convex with respect to that equation. There are many examples
in [15], which allow us to construct many others examples of convex sets and convex
functions in our context.
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4. Convex function with respect to a differential equation

In this section we present the definition of a convex function with respect to a differential
equation, as well as a number of examples and basic properties. Specifically, we state
first- and second-order characterizations of such functions and give some applications. For
example, we obtain a sufficient optimality condition for convex optimization problem with
respect to a differential equation.

Definition 4.1. Let C C £2 be al"-convex set. The functioff : 2 — R is said to be convex
(respectively strictly convex) il with respect to (3) or shortly™-convex(respectively
strictly I"-conveXin C if, for each solutiory of (3), the composite functiofioy : Ic - R
is convex (respectively strictly convex), whelie={t € I: y(t) € C}.

It easy to see, from Proposition 2.0.1, that convexity (in the usual sense) is equivalent
to convexity with respect t8” = 0. From now on we say that is convex to mean convex
with respect toc” = 0, andI"-convex to mean convex with respect to (3).

Proposition 4.0.4. Let C C 2 be ar-convex set. Iff, f1,..., fu : 2 — R are I'-convex
in C, then the following statements hold

(i) the functionkf is I'-convex inC, for each real numbet > 0;
(ii) the functionf1 +---+ f, is I'-convexinC.

Proof. Immediate. O

Proposition 4.0.5. LetC C £2 be aI'-convex set and lete R. If f: £ — R is I"-convex
in C thenC" ={x e C: f(x) <r}isI'-convex.

Proof. Givenx andy in C", take the solutiory to (3) such thay (11) = x andy (r2) = y.
Suppose that; < . Giventy <t < 1o, if we lets = (r — 11)/(t2 — t1) we haver =
(1 -5t +sro and O< s < 1. Thus, sincef o y is convex, f(y (1)) = f(x) < r and
f(y(t2)) = f(y) <r, we obtain

flr@®)=f(y(A=9)+st2)) <A —5)f(y (D) +sf (v (12)
<A—-s)r+sr=r.

The implication is thay (r) e C", for all 11 <t < t2. AsaresuliC” is I'-convex. O

Proposition 4.0.6. LetC C £2 be aI"-convex set. Thefi: 2 — R is I'-convex inC if and
only if the epigraphepi(f) = {(x,r) € C x R: f(x) <r}, is (I, 0)-convex, i.e., convex
with respect to

{x”:F(t,x,x’); (10)

r’” =0.

Proof. Let (x1,r1), (x2,r2) € epi(f) and letB(¢) = (v (¢), a(t)) be the solution to (10)
through them. Suppose thAatr) = (x1, r1) and B(r2) = (x2, r2), with #; < t>. Hencey
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is a solution tax” = I' (¢, x, x") with y (1) = x1, ¥ (t2) = x2 anda(t) = (1 — s)r1 + sr2,
wheres = (t — 11)/(r2 — 11). Now, since f o y is convex, f(y(t1)) = f(x1) < r1 and
f(y(t2)) = f(x2) < r2, we obtain

fly®)=fly(QA=s)r+s2)) <L) f(yt) +sf (v ()
<A-9)r1+sr2=a(l),

for all 11 < ¢ < t2. That signifies thaB(r) = (v (), a(r)) € epi(f), for all 11 <t < 12, SO
epi( f) is (I', 0)-convex.

Conversely, lety be a the solution ta” = I'(¢, x,x’) and lett1, 12 € Ic = {t € R:
y(t) € C}, suppose; < tp. Setry = f(y(t1)), r2= f(y(t2)) anda(t) = (L — s)r1 + sra,
wheres = (t —t1)/(t2 — t1). AS a consequence, sinte, r1) and(xz, r2) are in epi f), the
curveB () = (¥ (¢), a(t)) is the solution to (10) through them and €f) is (I", 0)-convex,
we have

fo y((l— Mt +M2)) < ot((l— Mt +M2) =A-Mr1+rr
=A-Nfoyt)+Arfoy(t),

forall 0 < A < 1. Hencef oy is convex inl¢c which implies thatf is I"-convex inC. O

Corollary 4.0.1. Let C C 2 be aI'-convex set and lef be a arbitrary index set. If
fi 82 — R is a I'-convex function inC for each j € J. Then the functionf: 2 —
R U {400} defined byf (x) = sug f;(x): j € J} is I'-convex inC.

Proof. The statement follows from Propositions 4.0.6 and 3.0:3.

Proposition 4.0.7. LetC C £2 be al"-convex setand lef : 2 — R be aI"-convex function
in C. Then the following statements hold

(i) every local minimizer of in C is a global minimizer
(i) the minimizer set of is a I"-convex set
(iii) if f is strictly I"-convex inC then there exists at most one minimizerfah C.

Proof. For (i), suppose that* is a local minimizer forf in C. Then there exists > 0
such thatf (x*) < f(x), for all x € B(x*,r), whereB(x*,r) ={x € C: ||lx —x™| < r}.
Let y € C. We are going to prove thaf(x*) < f(y). Take the solutiory to (3) such
that y (1) = x*, y(2) = y andr, < t». Let 0< < 1 such thaty(f) € B(x*, r), where
f=(1—10)r +ito. Now, sincef (x*) < f(x) for all x € B(x*, r), and f is I"-convex we
have

FEOH<Fy@®)<A=-DfEH+if(y) =M +i(fO) — f(&x9), (11)

implying that f (x*) < f(y) because > 0. So (i) is proved.

For (i), letx* a minimizer of f in C. Thus, it follows from (i) that the minimizer set of
fisC” ={x eC: f(x) <r*}, wherer* = f(x*). Now, from Proposition 4.0.5 we have
thatC"" is I"-convex and the statement (i) is proved.
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For (iii), note that ifx* is a minimizer of f in C then, for ally € C, the second in-
equality in (11) is strict whenevey £ x* since f is strictly I"-convex. Consequently,
FOx®) < f(x*) +1(f(y) — f(x*)) which implies f (x*) < f(y), because > 0. Hence,
from item (i), the statement follows.

Example 4.1. Let the Rosenbrock’s functiory :R? — R be given by f(x1,x2) =
100(x2 — x2)2+ (1 —x1)2. Itis not hard to see from (5) that, for each solutjoto (4), the
function f o y is a strictly convex quadratic function. Note that from Proposition 4.0.5 the
setC” = {(x1, x2) € R?: f(x1, x2) < r} is convex with respect to (4) for all> 0. Now, it
was shown in Example 3.1 that the sub-level G&tis not convex implying thaff is not
convex.

Example4.2. Let f :R?  — R be defined byf (x1, x2) = In?(x1) + In?(xy). Clearly, the
function f is not convex. Nowy is strictly convex with respect to (6) with= 2. Indeed,
since for each solutiop to (6) we obtain from (7) thaf o y is a strictly convex quadratic
function.

Example4.3.Let f: S . — R be defined byf (X) = |IndetX]|. To establish the convexity
of f with respect to (8), first note that for eagtir) = X1/2e! X 2VX¥2 x1/2 \where
X e 8, andV e 8", asolution of (8) there holds
foy@® =] det(Xl/ze’(X_l/ZVX_l/Z)Xl/z)|
= |IndetX) +In det(e’(xfl/z‘/xfl/z)ﬂ
— \Indet(X) + |n(etr(tX*l/2VX*l/2))|
= [IndetX) +tr(X Y2V X~ 2)|.

This implies thatf o y is convex for each solutiop to (8), sof is convex with respect
to (8). Now it is easy to see thtis not convex; for example, observe the one-dimensional
casef (x) =|Inx|.

Definition 4.2. Let I'1: 1 x 21 x R" — R" andI»:1 x £22 x R" — R" be continuous
functions. The differential equations
x" =T, x, x'), (E1)
x" =D, x,x)), (E2)
are said to be conjugated by the diffeomorphi®m £2; — 2, if, for each solutiony of

(E>2), there exists a solutiof of (E1) such thaty = @ o 8.

Note that if (E1) and (E2) are conjugated by the diffeomorphisin: 21 — 22, then
they also are conjugated by the diffeomorphigm?!: 2, — 2.

Proposition 4.0.8. Let C1 C £21 and C, C £2, be I'1-convex andl>-convex sets, respec-
tively. Suppose thatE;) and (E2) are conjugated by : 21 — §2, and @(C1) C C».
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Then f:C2 — R is I'x>-convex if and only ifg: C1 — R defined byg(x) = f(@(x)) is
I -convex.

Proof. We will prove only one part since the other one is similar. Supposejthat/-
convex. Letg be a solution to(E1). We are going to proveg o g8 is convex. As(E1)
and (E») are conjugated byﬁ‘l:fzz — §21, there exist a solutiory for (E2) such that
B=d Loy . HencegoB=fodod Loy = foy andthe statement follows.oo

Example4.4. The non-convex functioff : R?H — R defined byf (p1, p2) = |n2(p1p2_l/2)
is convex with respect to (6). In fact, first we have that (6) is conjugated’te O by
@ :R? - R?, defined by® (x1, x2) = (€', *2). Settingg(x1, x2) = (x1 — (1/2)x2)? we
achieveg(x) = f(®(x)). Sinceg is convex the statement follows from Proposition 4.0.8.

Example 4.5. The polynomialf : R , — R defined by

m n
bij
f([?l,-u,[’n):ZCi 1_[171'],
i=1 j=1
wherec; € Ry, andb;; € R is convex with respect to (6). Actually, first we have that (6) is
conjugated ta” =0 by @ :R" — R’} | defined by® (x, ..., x,) = (e, ..., ™). Letting
g = f o @, direct calculations yield

m
8(x1, ..., Xp) = Zciez'}:lbijx/"
i=1
So, sinceg is convex we obtain the statement from Proposition 4.0.8.

Example 4.6. Now, from Proposition 4.0.8 we can also perceive that Rosenbrock’s func-
tion f, defined in Example 4.1, is convex with respect to (4). To see it, first note that (4)
is conjugated toc” = 0 by ¢ :R? — R? defined by (x1, xp) = (x1, x? — x2). Setting
g(x1, x2) = 1003 + (1 — x1)2, we haveg(x1,x2) = f(®(x1,x2)). Sinceg = f o & is
convex, we obtain from Proposition 4.0.8 thyats convex with respect to (4).

4.1. Characterizations of convexity

Proposition 4.1.1. Let f: 2 — R be a differentiable function and I€t C £2 a I"'-convex
set. Thenf is I'-convex inC if and only if, for eachx € C and each non-trivial solutiory
of (3) throughx,

Fly®) = f@&+ (V@Y O)t —1), (12)

forallt € Ic = {r e R: y(t) € C}, wherey (r) = x. Furthermore,f is strictly I'-convex in
C if and only if strict inequality in(12) holds always for 7.

Proof. Let x € C. Take a solutiony of (3) such thaty(f) = x. Since f is I'-convex,
we have thatf o y is convex. Thus, from Proposition 2.0.2(i) we obtain tifat y (t) >
foy@®+ (foy)(@®)(t—1),forallz € Ic. And that implies (12).
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For the converse, ley be a solution of (3) and lef € I be such thaty (r) = x.
Since (12) holds alt € C andr € I, we obtainthatf oy (1) > foy )+ (foy) ()t —1),
forall ¢, 7 € I¢. Thus, from Proposition 2.0.2(i), we have thas y is convex, for all solu-
tion y of (3). That being sof is I'-convex inC. For the second part, we use an analogous
argument and Proposition 2.0.2(ii) O

Corollary 4.1.1. Let f : 2 — R be a differentiable function and 1€t C £2 be aI"-convex
set. If f is I"'-convex inC then each critical point off in C is a global minimizer inC.

Furthermore, if f is strictly I"-convex inC, then any critical point off in C is a strict
global minimizer inC.

Proof. Suppose that* € C is a critical point of f. Letx € C. Take the solutiory of (3)
such that (7) = x* andy (r) = x. SinceV f (x*) = 0, it follows from Proposition 4.1.1 that
f(x) > f(x*). Therefore, we can conclude thet is the global minimizer off. For the
second part, we use an analogous argument and the second part of Proposition#.1.1.

Proposition 4.1.2. Let f: 2 — R be a twice differentiable function and l€tc §2 be a
I'-convex set. Theffi is I'-convex inC if and only if there holds

(V2f (), v) + (Vf(x), T2, x,v)) >0, (13)

for all (¢, x,v) € I x C x R". Furthermore, if forv # 0 the strict inequality in(13) holds
and (3) is regular theny is strictly I"-convex.

Proof. Taking a solutiory of (3), we have from direct calculation that

o) O =(V2fy®)y' @),y O)+{VI(y®). T (t,y@®), 7' ®)), (14)

for all € I. Now, since (13) holds for allz, x, v) € I x C x R", we have from (14) that
(foy)'(t) =0, forallr € Ic ={t € I y(¢t) € C}. This implies from Proposition 2.0.2(iv)
that f o y is convex inl¢ and so we obtain that is I"-convex inC.

Conversely, giveriz, x, v) € I x C x R take the solutior of (3) such thay (r) = x and
y'(t) =v. As f is I'-convex inC, we have thatf o y is convex inlc. Hence, it follows
from Proposition 2.0.2(iii) thatf o )"(t) >0, forallt € Ic ={r € I: y(¢) € C}. Thus,
sincey (t) = x andy’(z) = v we have from (14) that (13) holds. For the second part, we
use an analogous argument and Proposition 2.0.2(v), gifice£0 forallzr e 1. O

Now, if x* is a critical point of the twice differentiablé -convex functionf, then
the inequality (13) implies tha@? f (x*) is positive semi-definite. Thus all critical points
satisfy the second-order necessary conditions to be local minimizers. In fact, it follows
from Corollary 4.1.1 that it is a global minimizer. Note that wherr, x, v) = 0, Proposi-
tion 4.1.2 is a usual second-order characterization of convexity.

Example 4.7. The functionf : S, — R defined byf(X) = detX ! + detx/? is con-
vex with respect to (8). In fact, we have(r, X, V) = VX1V, Vf(X) = (—detx 1 +
(1/2)detx¥/?2)x~1 and
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VZF(X)V = (detx ! + (1/4) detxV/?)(x 1, v)x 1
— (—detx !+ (1/2) detx/?) x tvx L.
Then, by substituting in (13) direct calculations yield
(VZFXOV, V) + (V). T2, X, V)
= (detx 1+ (1/4) detx V2) ((x 1, V))* > 0,

forall X € 8, V € §". Therefore, from Proposition 4.1.2 it follows that the functipn
is convex with respect to (8). Nowy, is not convex, for example looking in one-dimension
f(x) =x~1 4 x¥/2 and the statement becomes immediate.

Corollary 4.1.2. Let ¥ : I x 2 — R”" be a continuous function, where intervalc R
and 2 c R" are open. Suppose that c 2 is convex with respect t8” = ¥ (¢, x)
and f: 2 — R is a twice differentiable function. If is ¥-convex inC, then(V f(x),
w(t,x)) >0, forall (z, x) € I x C. Furthermore, iff is convex andV f (x), ¥ (¢,x)) >0
forall (r,x) e I x C, thenf is ¥-convex.

Proof. From Proposition 4.1.2 we hav&/2 f (x)v, v) + (V f(x), ¥ (z,x)) > 0, for all
(t,x,v) e I x C x R", sincef is ¥-convex. Lettingyv = 0 in the last inequality, we ob-
tain that(V f (x), ¥ (¢, x)) > 0, for all (¢, x) € I x C. Now, the second statement follows
from Proposition 4.1.2 and by noting that ff is convex, then'V2f (x)v, v) > 0 for all
(x,v)eCxR". O

Corollary 4.1.3. LetI € R be a open interval and let : I — R be a continuous function.
The functionf : I — R is convex with respect to

= A (15)
if and only if f(x) + A(x) f'(x) >0, forall x € I.

Proof. It follows from Proposition 4.1.2. O

Example 4.8. Letting A(x) = —1 andl = R in Corollary 4.1.3, we can check that the
functions f1(x) = e™*, fo(x) = coshx), f3(x) = xe* and f4(x) = —x3 — 4x are convex
with respect to (15).

Example 4.9. Letting A(x) = —tan(x) and! = (—x /2, 7/2) in Corollary 4.1.3, we can
check that the functiongs(x) = In(sedx) + tan(x)), fe(x) = In(cogx)) and fr1(x) =
sedx) — In(cogx)) are convex with respect to (15).

Corollary 4.1.4. LetC C £2 be al'-convex set. Lef : 2 — R and¢:J — R be twice
differentiable functions, wheren(f) C J. Suppose thap is monotone increasing, i.e.,
¢’ > 0,theng o f is I'-convex inC if and only if

9" (@)

2
1
IO LAE (16)

(V2 v, o) +(VFE), Dt x,v)) >
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forall (¢, x,v) € I x C x R". Furthermore, the following statements hold

() if ” <0, thenyf is I'-convex inC;
(i) if ¢” >0and f is I'-convex inC, theny o f is I'-convex inC.

Proof. All the following equations and inequalities are valid for@llx, v) € I x C x R".
Letting g = ¢ o f, we have thaVg = (¢’ o /)Vf andV2¢ = (¢” o AIVFV T + (¢ o
f)V2f.Thus

(V2gu,v)+ (Ve, 1) = (" o IV L 02+ (9 0 (V2 v, v)+ (VA T)).  (17)
Thus, from (17) and Proposition 4.1.2 it follow that= ¢ o f is I'-convex if and only if
@" 0 UV + @ 0 H((VEfo,v)+ (VA T) >0,

and asp’ > 0 this last inequality is equivalent to (16).

For (i). Note that the right-hand side of (16) is non-negative, sigice 0 and¢” < 0.
This implies (V2fv,v) + (Vf,I") > 0 and the conclusion is obtained from Proposi-
tion 4.1.2.

For (ii). Since¢’ > 0, ¢” > 0 and f is I"'-convex inC we have from (17) and Propo-
sition 4.1.2 that(V?g v, v) + (Vg, I') > 0, which implies from Proposition 4.1.2 that
g =go fis I'-convex inC and the proof is complete.O

Let C C 2 be aI'-convex set and lef : 2 — R. The functionf is said to bdogarith-
mically convex with respect {8) in C, or shortlylogarithmically I"-convexn C, if f >0
in C and Inf is I'-convex inC.

Corollary 4.1.5. Let C C §2 be alI'-convex set and lef : 2 — R a twice differentiable
function. The functiory is logarithmically I"-convex inC if and only if

1
(V2 £ ()v, o)+ (V£ (x), T2, x,v)) > m(Vf(x), o), (18)

forall (z, x,v) € I x C x R". As a consequence, jfis logarithmically I"-convex thery
is I'-convex.

Proof. Letp(z) =In(z) in Corollary 4.1.4. The result follows from Corollary 4.1.4(i) not-
ing thaty'(r) =1/t > 0, ¢” (1) = —1/1? < 0 resulting
o' (f(x) 1
— = >0,
o(f(x)  fx)
and hence (17) yields (18).0

Example 4.10. The function det’: S . — R is convex with respect to (8). Indeed, it is
clear thatG : S} | — R defined byG(X) =In det1(X) is convex with respect to (8) using

an argument analogous to that in Example 4.3 and the conclusion follows from Corol-
lary 4.1.5.
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4.2. Sufficient optimality conditions for optimization problem

Let C C £2 be ar-convex set and lef : 2 — R be a differentiabld”-convex function
in C. Consider the following™-convex nonlinear programming problem

(P) {mln f(x)
s.t.x eC.
Proposition 4.2.1. A pointx* € C is a solution to(P) if for each pointx € C we have
that (V f(x*), v/« (t*)) > 0, wherey,«, is the solution tq3) such thaty,«, (r*) = x* and
Yoy (F) = x with t* < 7.

Proof. Let x* € C be a solution ta P) andx € C. We are going to show thaf(x*) <
f(x). Take the solutiony,+, to (3) such thay,«, (t*) = x* andy,+, () = x . Now, sincef
is I"-convex, we have from Proposition 4.1.1 that

F@) = f(yex@) = fO)+ (V5 ype, ()T —17),
and agV f (x*), y.. . (t*)) > 0 andr — r* > 0, the conclusion follows. O

Proposition 4.2.2 (KKT sufficient optimality condition) Let £2 be an openl"-convex
set. Letf, g:2 — R™ be given, whereg = (g1,...,8gm) and f, g;: 2 — R are dif-

ferentiable fori = 1,...,m. Suppose thatf, g;: 2 — R are I'-convex functions for
i=1,...,m and x* is a feasible point ta(P) with C = {x € R": g(x) < 0}. If there

existu = (u1, ..., uwy) € R™ such that

VI +) wiVex =0, p>0 and (u,g(x"))=0, (19)
i=1
thenx* is a solution to(P).

Proof. First note that, iff, g;: 2 — R are I'-convex functions, foi =1,...,m, and
u = 0, then we have from Proposition 4.0.4 that2 — R defined byh(x) = f(x) +
{u, g(x)) is I'-convex. Note that

f(x)>h(x) forallxeC. (20)

Now from the first equality in (19) we obtain th&t: (x*) = 0 and asc* is in C it follows
from Corollary 4.1.1 thak™ is a minimizer fork in C. Thus, from (20) and the second
equality in (19) we have that

F() Zh(x) = h(x™) = f(x"),
for all x € C, and the proposition is proved.c

5. Monotone operatorswith respect to a differential equation

In this section we define the monotone operators with respect to a differential equation,
give a characterization and present some examples. In particular, we state that each differ-
entiable functionf is I"-convex if and only if the gradient operat®rf is I"-monotone.
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Definition 5.1. Let C ¢ R" be al'-convex set. The operatdf: 2 — R” is said to be
monotone with respect to the differential equation (3)iror shortly I"-monotondn C
when, for each solutiop of (3), the real functionj(r ) : Ic — R defined by

V() =(T(y®),y'®),

is monotone (non-decreasing), whége= {r € I: y (¢) € C}. In particular, whenj(r ) is
strictly monotone, for aly, we say thaf is strictly I"-monotonen C.

Note thatT" is monotone (in the usual sense) if it is monotone with respect to the differ-
ential equation” = 0.

Example5.1. The operatofl : R". , — R2 defined by

T(x1, ..o x) = (x7HINGD), o x5t INC))

is not monotone, but it is monotone with respect to (6). Actually, direct calculation shows

n

Yy @ =Y (i/p) IN(p) + i/ pi)°t),

i=1
for each solutiony of (6). Thus, from the last equality we easily obtain that ) is
monotone and the statement follows.

Proposition 5.0.3. Let C C £2 be alI'-convex set. The differentiable functign 2 — R
is I'-convex(respectively strictlyI"-conve) in C if and only if the gradient operator
Vf:2 — R" is I'-monotongrespectively stricthy"-monotongin C.

Proof. It follows from Proposition 2.0.2(iii) by noting thatf o y) = (Vfoy,y') =
Iﬂ(vf,y) for all y. O

Proposition 5.0.4. Let C C £2 be aI"-convex set. The differentiable operar 2 — R”
is I"’-monotone irC if and only if

(T"(x)v,v)+ (T (x), I'(t,x,v)) >0, (21)

for all (¢,x,v) € I x C x R". Furthermore, if the strict inequality i21) holds for all
v # 0, and(3) is regular thenT is strictly I"-monotone irC.

Proof. Taking a solutiory of (3) we have by direct calculation that
iy @O ={T"(y )y @,y O)+(T(y®), [ (1, 70,y ®))) (22)

forall 7 € I. Now, given(z, x, v) € I x C x R", take a solutiory of (3) such thay (1) = x
andy’(r) = v. If T is I'-monotone to (3) inC, we have thai/(r ) is monotone in¢c =
{tel: y(t) e C}, hencewe hav¢(/T7y)(t) > 0, for allt € I which with (22) implies (21)
sincey (1) = x andy’(¢r) = v.

Conversely, take a solution of (3). Since, for allz, x, v) € I x C x R" Eq. (21) holds,
we have from (22) thatng,y)(t) >0, for allt € Ic. Thusy(r ,) is monotone in/c, so
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implying that7 is I"-monotone to (3) inC. The proof of the second part comes from a
similar argument, since’(r) #OforallteI. O

Example 5.2. The operatoT : S | — S” defined byT (X) = —X"2 4 X1, is strictly
monotone with respect to (8). Indeed, substitutingr, X, V) = VX~1V, T(X) =

— X2+ xtand7T'X)V=X2vx 14+ xlvx—2-x-1lvx—1lin (21), we obtain,
after some algebraic manipulations, that

(T' X)WV, V) +(T(X), [, X, V)) = | X Tvx2|* > o,

forall X e §%,, V e §" andV # 0. Therefore, from Proposition 5.0.4 it follows tHatis
strictly monotone inS’; , with respect to (8), since (8) is regular. For example, look at the
one-dimension casg(x) = —x 2 +x~1 and it is easy to see thatis not monotone.

6. Final remarks

Now we are going to state a consequence of the existence of a sifiatipnotone
operator for the differential equation

X" =T x,x). (23)

First, note that iff is a I"-convex function ang is a periodic solution to (23) thefio y

is constant. In the other words, if (23) has a periodic solution then there is no strictly
I'-convex function for it. Now, as the monotonicity concept is in a certain sense a general-
ization of the convexity concept, a natural and logical consequence is that the existence of
a strictly I"-monotone operator also imposes restrictions on the behavior of the solutions
to (23).

Proposition 6.0.5. If a strictly I"-monotone operator with respect (83) exists, then any
periodic solution tq(23)is trivial, i.e., it consists of a simple point.

Proof. Let T a strictly I"'-monotone operator. We derive a contradiction assuming that
there is a nontrivial periodic solutiop to (23). Sincey ;) iS monotone ang is a peri-
odic solution we have that it is constant, so implying thas not strictlyI"-monotone and
that is a contradiction. As a result, there is no nontrivial periodic solution to (23).
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