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Subgradient Algorithm on Riemannian Manifolds1

O. P. FERREIRA2 AND P. R. OLIVEIRA3

Communicated by F. Giannessi

Abstract. The subgradient method is generalized to the context of
Riemannian manifolds. The motivation can be seen in non-Euclidean
metrics that occur in interior-point methods. In that frame, the natural
curves for local steps are the geodesies relative to the specific Riemannian
manifold. In this paper, the influence of the sectional curvature of the
manifold on the convergence of the method is discussed, as well as the
proof of convergence if the sectional curvature is nonnegative.
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1. Introduction

Tools from Riemannian geometry have been used in mathematical pro-
gramming to obtain both theoretical results and practical algorithms (see
Refs. 1-7). Recent studies by Helmke and Moore (Ref. 8) and Udriste (Ref.
9) provide some examples and a vast bibliography.

The subgradient method is one of the classical algorithms of nondiffer-
entiable optimization, discovered by Shor (Ref. 10) in the early sixties, and
is always an object of study; see Refs. 11-13 and their references. This
motivates us to study the matter in the context of Riemannian goemetry.

The subgradient algorithm is proposed to solve the problem with
constraints
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where M is a (connected) complete manifold and / a real-valued convex
function defined on M. Several definitions and results of Riemannian geom-
etry will be necessary for the construction of the algorithm, which will allow
us to see it as an unconstrained method; basic geometry references are for
example Refs. 14-17.

The proof of convergence given here is inspired by the works of
Burachik et al. (Ref. 18) and Correa and Lemarechal (Ref. 11). It is also
important to note, as in M= Rn, the fundamental importance of the
inequality

first obtained by Kiwiel (Ref. 19), and generalized by da Cruz Neto and
Oliveira (Ref. 20) for manifolds with nonnegative sectional curvature.

2. Basic Concepts

Let M be a (connected) complete Riemannian manifold. Let TXM be
the tangent space to M at x. The exponential map expx is defined on TXM
by

where y is the geodesies of M such that

When the reference to the point x is not necessary or is implicit, the notation
yu means that

If ||v|| = 1, the geodesic y„ is said to be parameterized by arc length or
normalized.

If expx: V-* U where VcTxM and UcM, is a diffeomorphism, then
U is called a normal neighborhood of x. If

is such that Be(0) c V, we call expx B£(0) := Bc(x) the normal ball or geodes-
ies with center x and radius e.

Given x and x'eM, the distance from x to x' is
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where a x x :[a, b] ->M is a piecewise smooth curve joining x to x', that is,

and

is the length of axx'.

Theorem 2.1 (Hopf and Rinow). Let M be a (connected) Riemannian
manifold. The following statements are equivalent:

(a) for every xeM, expx is defined on all TXM, that is, M is complete;
(b) (M, d) is complete as a metric space, where d is defined in (1);

namely, any Cauchy sequence of M is a convergent sequence.

Furthermore, each of the above statements implies that:

(c) any two points x, x'eM can be joined by a geodesies of length
l(y) = d(x, x'); the geodesies with this property is called minimal.

Proof. This can be found in Ref. 15.

Definition 2.1. A real-valued function f defined on a complete Rie-
mannian manifold M is said to be a convex function if f is convex when
restricted to any geodesies of M, which means that

holds for any a, beR and 0< t< l .
Some properties related to convex functions on Riemannian manifolds

can be found in Refs. 9, 16, 17.

Definition 2.2. A real-valued function f defined on a complete Rie-
mannian manifold M is said to be Lipschitzian if there exists a constant
L(M) = L>0 such that

for all x, x'eM. Besides this global concept, if it is established that, for all
x0eM, there exists L(x0)>0 and S = 8(xo)>0 such that Inequality (2)
occurs, with L = L(x0), for all x and x'eBs(x0) := {xeM/d(x0, x)<5}, then
f is called locally Lipschitzian.
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Theorem 2.2. Let/be a convex function. Then,f is locally Lipschitzian.

Proof. See Refs. 16 and 9. D

Definition 2.3. Let f be a convex function and xeM. A vector seTx M
is said to be a subgradient off at x if, for any geodesies 7 of M with 7 (0) = x,

(f°y)(t)> f(x)+t<s,y'(0)>,

for any t>0. The set of all the subgradients of f at x, denoted by 8f(x), is
called the subdifferential of f at x.

Theorem 2.3. Let f be a convex function. Then, for every xeM, df(x)
is nonempty, convex, and compact.

Proof. See Refs. 16 and 9. D

Lemma 2.1 (Gauss). Let xeM, veTxM such that expx v is defined
and ueTxMxTv(TxM). Then,

Proof. See Refs. 14 and 15.

Theorem 2.4 (Toponogov). Let M be a complete Riemannian mani-
fold with sectional curvature K>H. Let y1 and y2 be segments of normalized
geodesies in M with y1(0) = y2(0). Let us indicate by M2(H) a manifold of
dimension 2 with constant curvature H. Admit that the geodesies y1 is
minimal and that, if H>0, l(Y2)<n/*jH. Consider two normalized geo-
desies y1 and y2 in M2(H), such that

and

Then,

Proof. See Refs. 14 and 15. D

Corollary 2.1. Let M be a complete Riemannian manifold with sec-
tional curvature K>0. If y„, and y^ are normalized geodesies such that
n,,(0) = 7t,2(0), then
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Proof. With the notation of Theorem 2.4, M2(H) is the subspace
generated by the vectors v\ and v2, H=0, y1 = y„,, y2= yu2, y1(t) = tv1 and
y 2 ( t ) = t v 2 . We observe too that, in this case, we have no hypothesis on
y2 = yu2. When this identification is made, the proof is immediate from
Theorem 2.4. D

3. Definition of the Problem and the Algorithm

Let M be a (connected) complete Riemannian manifold, and let f be a
convex function. The set (9* denotes the set of minimizers of f and

denotes its infimal value. The problem is to estimate f* and also to find a
point of &*, if such point exist, that is, 6*^0.

Algorithm 3.1. Conceptual Subgradient Algorithm. The sequence
{ t k } is given, with tk > 0 for k = 1, 2,. . .

Step 0. Initialize. Choose x\eM and obtain s1edf (x1) . Make k= 1.

Step 1. If sk = 0, stop. Otherwise, calculate the geodesies jvk with
rot(Q)=xk, yot(0) = u*, vk=-sk/\\sk\\.

Step 2. Make xk +1 = Jvk (tk).

Step 3. Obtain s k + 1 e d f ( x k + 1 ) . Make k = k+ 1, and go to Step 1.

4. Preliminary Results

As is known, the sequence obtained by Algorithm 3.1 does not decrease
the function. So a {tk} sequence should be chosen such that the respective
{xk} sequence approaches the set &*, as is usual in the case where M= Rn.
As in Ref. 13, for Rn, we shall obtain some preliminary properties, in particu-
lar an upper estimate for the tk's.

Theorem 4.1. Let x^e(P*/0, and let Be(x^) be a normal ball. If
xk$&*, xkeBf(Xx), then 8k>0 exists such that, by choosing 0<tk<8k in
Algorithm 3.1,

Proof. Let y0 be the geodesic parameterized by the arc length, given
by Theorem 2.1 (c), such that yB(0) = x* and 71)(?*) = xt,with
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d(xk,xif,x:/f) = t*. Consider the normal sphere S1(x*), boundary of the
normal ball -B,*(x*), which by the Gauss lemma is a submanifold of codi-
mension 1 with

Let skedf(xk). By definition,

and at t = t*,

As xk$&*, it follows that f(x*) <f(xk), which implies <sk, v > > < 0 . So, 8k>0
exists such that yVk(t)eBl.(xi() for all 0< t< Sk, where vk= -sk/\\sk \\. There-
fore, for all 0<t k <8 k ,

and this proves the result.

It is a consequence of the Hadamard theorem (Refs. 14 and 15) that,
if M is complete simply connected and has sectional curvature K<0, then
expx.: TX.M-*M is a global diffeomorphism and this implies that we can
take Be(x*) = M. But Theorem 4.1 does not give an estimate for 8k in terms
of xk and x*, as happens when M= Rn. Nonetheless, this estimate can be
obtained if K>0, as follows.

Intuitively, an idea can already be had of the influence of the sectional
curvature K on the behavior of the sequence {xk} defined by Algorithm 3.1.
First observe that, if K > 0, the geodesies tend to approximate one another,
and the contrary occurs if K<0. This suggests that we can go further along
the geodesies without distancing ourselves from x*, on a nonnegative curva-
ture than on a negative one.

Lemma 4.1. See Ref. 20. Let {xk} be the sequence generated by Algo-
rithm 3.1. If M has sectional curvature k>0, then for all yeM,

for all keN.

Proof. Let /„, be the minimizing geodesies, that is, for v, such that
| | v l | = l, we have n,(0) = xk, y U { ( t 1 ) = y , with t1 = d(xk,y). Also, let y„, be
the geodesies such that v2 = vk=-sk/\\sk\\, ym(0) = xk and yv2(tk)=xk+1 ,

D
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with tk = t2. Then, it follows from Corollary 2.1 and Definition 2.1 that

Consider the set

Corollary 4.1. Let {xk} be the sequence generated by Algorithm 3.1,
and let K>0 be the sectional curvature of M. For all ze0, we have

for all ke N.

Proof. This follows immediately from the definition of 0 and by
Lemma 4.1. D

Theorem 4.2. Let be x^e&*^0, and let {xk} be the sequence gener-
ated by Algorithm 3.1. If M has a curvature K^0 and xk$&*, then

for all

Proof. In Lemma 4.1, take y = x#. Then,

As x* =£xk, it follows that, for all

we have

and this concludes the proof.

Definition 4.1. A sequence {yk} in the complete metric space (M, d)
is Fejer convergent to a set WC M if, for every we W, there exists a sequence

D
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{ek}cR such that ek>0, £^0 ek<+co, and

for all k.

Theorem 4.3. Let {yk} be a sequence in the complete metric space
(M, d). If {yk} is quasi-Fejer convergent to a nonempty set WCM, then
{yk} is bounded. If furthermore, a cluster point y of {yk} belongs to W,
then lim^oo yk=y.

Proof. This is the same proof as in Ref. 18, replacing || • || by d. D

5. Convergence of the Algorithm

Theorem 5.1. Let {xk} be the sequence generated by Algorithm 3.1,
and let K> 0 be the sectional curvature of M. If the sequence {tk} is chosen
to satisfy

then

In addition, if (9* ^ 0, then the sequence {xk} converges to a point x* ed*.

Proof. By contradiction, suppose that

On the one hand, this implies that (9=£0. Besides, from (5) and Corollary
4.1, {xk} is quasi-Fejer convergent to &, where ek = t2k. Therefore, {xk} is
bounded and consequently {sk}, where skedf(xk), is also bounded. Let us
say that ||sk|| <C0, for all keN, where C0>0. On the other hand, given ze&,
there exist C1 >0 and k0eN such that

For this 2, it follows from Lemma 4.1 that
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From hypothesis (5), tk-»0, and so we may suppose that k0 is such that
tk<(C1/Co), for all k>k0. Substituting this into (6), we have

for all k>k0. Adding (7), we have

for all /. This contradicts (4), as d(x/+ko, z) is bounded. It follows from the
first part that {f(xk)} possesses a decreasing monotonous subsequence
{f(xkj)} such that

Without loss of generality we shall suppose that the sequence {f(xk)}
is decreasing, monotonous, and converges to /*. Being bounded, the
sequence {xk} possesses a convergent subsequence {xkj}. Let us say that

which by the continuity of f implies

and so x*e(9. Thus, {xk} has an cluster point x^e&i as {xk} is quasi-
Fejer convergent to 0, it follows from Theorem 4.3 that the sequence {xk}
converges to x*. D

There follow two examples of complete Riemannian manifolds where
the geodesies has an explicit formula. For more details on these examples,
see Refs. 4, 7, and 20.

Example 5.1. The set

with the affine-scaling metric g = (gij), where g/,(x) = <5///x1/xj, is a complete
Riemannian manifold, with K=0 and tangent plane on point xeM equal
to TXM= Rn. The geodesic y :R-»M of M with initial conditions
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is

with

Thus, the problem min f(x), such that x>0, can be solved by Algorithm
3.1, by using this last expression.

Example 5.2. The set

with the projective metric

is a complete Riemannian manifold, with K=0 and tangent plane at point
xeM given by

The geodesic 7: R-»M of M with initial conditions equal to

is

with

Therefore, the problem

can be solved by Algorithm 3.1, by using this last expression.
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6. Conclusions

In Section 4, one sees the need of the hypothesis on the sectional curva-
ture of the manifold, since the role of Corollary 2.1 is central in the proof
presented, which is only valid in the case of positive curvature. As geodesies,
in the presence of positive curvature, tend to grow closer, it is intuitive to
believe that it is possible to improve the estimate (3) in terms of the curva-
ture. Proof of the covergence without a hypothesis about the curvature also
remains open. Finally, we observe that Algorithm 3.1 solves the constrained
problem

where M is a connected, complete Riemannian manifold of nonnegative
sectional curvature, and the geodesies of M are available or easily
approximated.
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