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Abstract

By using Moreau’s decomposition theorem for projecting onto cones, the problem of project-
ing onto a simplicial cone is reduced to finding the unique solution of a nonsmooth system of
equations. It is shown that Picard’s method applied to the system of equations associated to the
problem of projecting onto a simplicial cone generates a sequence that converges linearly to the
solution of the system. Numerical experiments are presented making the comparison between
Picard’s and semi-smooth Newton’s methods to solve the nonsmooth system associated with
the problem of projecting a point onto a simplicial cone.

1 Introduction

The interest in the subject of projection arises in several situations, having a wide range of ap-
plications in pure and applied mathematics such as Convex Analysis (see e.g. [23]), Optimization
(see e.g. [4,9,10,20,41,44]), Numerical Linear Algebra (see e.g. [42]), Statistics (see e.g. [6,15,24]),
Computer Graphics (see e.g. [19] ) and Ordered Vector Spaces (see e.g. [1, 26,27,35,37,38]). More
specifically, the projection onto a polyhedral cone, which has as a special case the projection onto a
simplicial one, is a problem of high impact on scientific community1. The geometric nature of this
problem makes it particularly interesting and important in many areas of science and technology
such as Statistics (see e.g. [24]), Computation (see e.g. [25]), Optimization (see e.g. [32, 44]) and
Ordered Vector Spaces (see e.g. [35]).

The projection onto a general simplicial cone is difficult and computationally expensive, this
problem has been studied e.g. in [2,16,20,34,35,44]. It is a special convex quadratic program and
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its KKT optimality conditions form the linear complementarity problem (LCP) associated with it,
see e.g [33,34,44]. Therefore, the problem of projecting onto simplicial cones can be solved by active
set methods [5, 29, 30, 33] or any algorithms for solving LCPs, see e.g [5, 33] and special methods
based on its geometry, see e.g [33, 34]. Other fashionable ways to solve this problem are based on
the classical von Neumann algorithm (see e.g. the Dykstra algorithm [13, 15, 48]). Nevertheless,
these methods are also quite expensive (see the numerical results in [32] and the remark preceding
section 6.3 in [43]).

In this paper we particularize the Moreau’s decomposition theorem for simplicial cones. This
leads to an equivalence between the problem of projecting a point onto a simplicial cone and one of
finding the unique solution of a nonsmooth system of equations. We apply Picard’s method to find
a unique solution of the obtained associated system. Under a mild assumption on the simplicial
cone we show that the method generate a sequence that converges linearly to the solution of
the associated system of equations. Numerical experiments are presented making the comparison
between Picard’s and semi-smooth Newton’s methods for solving the nonsmooth system associated
with the problem of projecting a point onto a simplicial cone.

The organization of the paper is as follows. In Section 2, some notations, basic results used in
the paper and the statement of the problems that we are interested are presented, in particular, the
problem of projecting onto simplicial cone. In Section 3 we present some results about projection
onto simplicial cones. In Section 4 we present two different Picard’s iterations for solving the
problem of projecting onto simplicial cone. In Section 5 theoretical and numerical comparisons
between Picard’s methods and semi-smooth Newton’s method for solving the problem of projecting
onto simplicial cone [17] are provided. Some final remarks are made in Section 6.

2 Preliminaries

Consider Rm endowed with an orthogonal coordinate system and let 〈·, ·〉 be the canonical scalar
product defined by it. Denote by ‖·‖ be the norm generated by 〈·, ·〉. If a ∈ R and x = (x1, . . . , xm) ∈
Rm, then denote a+ := max{a, 0}, a− := max{−a, 0} and

x+ :=
(
(x1)+, . . . , (xm)+

)
, x− :=

(
(x1)−, . . . , (xm)−

)
, |x| =

(
|x1|, . . . , |xm|

)
.

For x ∈ Rm, the vector sgn(x) will denote a vector with components equal to 1, 0 or −1 depending
on whether the corresponding component of the vector x is positive, zero or negative. We will call
a closed set K ⊂ Rm a cone if the following conditions hold:

(i) λx+ µy ∈ K for any λ, µ ≥ 0 and x, y ∈ K,

(ii) x,−x ∈ K implies x = 0.

Let K ⊂ Rn be a closed convex cone. The polar cone and the dual cone of K are, respectively, the
sets

K⊥ := {x ∈ Rn, | 〈x, y〉 ≤ 0, ∀ y ∈ K}, K∗ := {x ∈ Rn | 〈x, y〉 ≥ 0,∀ y ∈ K}. (1)

It is easy to see that K⊥ = −K∗. The set of all m×m real matrices is denoted by Rm×m, I denotes
the m×m identity matrix and diag(x) will denote a diagonal matrix corresponding to elements of
x.
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For an M ∈ Rm×m consider the norm defined by ‖M‖ := maxx 6=0{‖Mx‖ : x ∈ Rn, ‖x‖ = 1},
this definition implies

‖Mx‖ ≤ ‖M‖‖x‖, ‖LM‖ ≤ ‖L‖‖M‖, (2)

for any m×m matrices L and M .
Denote Rm

+ = {x = (x1, . . . , xm) ∈ Rm : x1 ≥ 0, . . . , xm ≥ 0} the nonnegative orthant. Let
A ∈ Rm×m be a nonsingular matrix. Then, the cone

K := ARm
+ = {Ax : x = (x1, . . . , xm) ∈ Rm, x1 ≥ 0, . . . , xm ≥ 0}, (3)

is called a simplicial cone or finitely generated cone. Let z ∈ Rm, then the projection PK(z) of the
point z onto the cone K is defined by

PK(z) := argmin {‖z − y‖ : y ∈ K} .

From the definition of simplicial cone associated with the matrix A this definition is equivalent to

PK(z) := argmin

{
1

2
‖z −Ax‖2 : x = (x1, . . . , xm) ∈ Rm, x1 ≥ 0, . . . , xm ≥ 0

}
.

Remark 1 It easy to see that PRm
+

(z) = z+. It is well know that the projection onto a convex set

is continuous and nonexpansive, in particular, we have ‖z+ − w+‖ ≤ ‖z − x‖ for all z, w ∈ Rm,,
see [23].

The above remark shows that projection onto the nonnegative orthant is an easy problem. On the
other hand, the projection onto a general simplicial cone is difficult and computationally expensive,
this problem has been studied e.g. in [2, 16, 17, 20, 35, 44]. The statement of the problem that we
are interested is:

Problem 1 (projection onto a simplicial cone) Given A ∈ Rm×m a nonsingular matrix and
z ∈ Rm, find the projection PK(z) of the point z onto the simplicial cone K = ARm

+ .

The problem of projection onto a simplicial cone has many different formulations which allow
us develop different techniques for solving them. In the next remark we present some of these
formulations.

Remark 2 Let A ∈ Rm×m be a nonsingular matrix and z ∈ Rm. From the definition of the the
simplicial cone associated with the matrix A in (3), the problem of projection onto a simplicial cone
K = ARm

+ may be stated equivalently as the following quadratic problem

Minimize
1

2
‖z −Ax‖2, subject to x ≥ 0.

Hence, if v ∈ Rm is the unique solution of this problem then we have PK(z) = v. The above problem
is equivalent to the following nonnegative quadratic problem

Minimize
1

2
x>Qx+ x>b+ c, subject to x ≥ 0, (4)
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by taking Q = A>A, b = −A>z and c = z>z/2. The optimality condition for the problem (4)
implies that its solution can be obtained by solving the following linear complementarity problem

y = Qx+ b, x ≥ 0, y ≥ 0, x>y = 0. (5)

where y is a column vector of variables in Rm. It is easy to establish that corresponding to each
nonnegative quadratic problems (4) and each linear complementarity problems (5) associated to
symmetric positive definite matrixes, there are equivalent problems of projection onto simplicial
cones. Therefore, the problem of projecting onto simplicial cones can be solved by active set methods
[5, 29, 30, 33] or any algorithms for solving LCPs, see e.g [5, 33] and special methods based on its
geometry, see e.g [33, 34]. Other fashionable ways to solve this problem are based on the classical
von Neumann algorithm (see e.g. the Dykstra algorithm [13, 15, 48]). Nevertheless, these methods
are also quite expensive (see the numerical results in [32] and the remark preceding section 6.3
in [43]).

As we will see in the next section, by using Moreau’s decomposition theorem for projecting onto
cones, solving Problem 1 is reduced to solving the following problem.

Problem 2 (nonsmooth equation) Given A ∈ Rm×m a nonsingular matrix and z ∈ Rm, find
the unique solution u of the nonsmooth equation(

A>A− I
)
x+ + x = A>z. (6)

In this case, PK(z) = Au+ where K = ARm
+ .

Since x+ = (x+ |x|)/2 the Problem 2 is equivalent to the following problem:

Problem 3 (absolute value equation) Given A ∈ Rm×m a nonsingular matrix and z ∈ Rm,
find the unique solution u of the absolute value equation(

A>A+ I
)
x+

(
A>A− I

)
|x| = 2A>z. (7)

In this case, PK(z) = Au+ where K = ARm
+ .

We will show in Section 4 that Problem 2 and Problem 3 can be solved by using Picard’s method.
We end this section with the Banach’s fixed point theorem which will be used for proving our main
result, its proof can be found in [28] (see Theorem 5.1−2 pag. 300 and Corollary 5.1−3 pag. 302).

Theorem 1 (Banach’s fixed point theorem) Let (X, d) be a non-empty complete metric space,
0 ≤ α < 1 and T : X → X a mapping satisfying d(T (x), T (y)) ≤ αd(x, y), for all x, y ∈ X. Then
there exists an unique x ∈ X such that T (x) = x. Furthermore, x can be found as follows: start with
an arbitrary element x0 ∈ X and define a sequence {xn} by xn+1 = F (xn), then limn→+∞ xn = x
and the following inequalities hold:

d(x, xn+1) ≤
α

1− α
d(xn+1, xn), d(x, xn+1) ≤ αd(x, xn), n = 0, 1, . . . .
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3 Moreau’s decomposition theorem for simplicial cones

In this section we present some results about projection onto simplicial cones. We recall the
following result due to Moreau [31]:

Theorem 2 (Moreau’s decomposition theorem) Let K,L ⊆ Rm be two mutually polar cones
in Rm. Then, the following statements are equivalent:

(i) z = x+ y, x ∈ K, y ∈ L and 〈x, y〉 = 0,

(ii) x = PK(z) and y = PL(z).

Remark 3 Let K be a cone in Rm. Note that from Moreau’s decomposition theorem, definition of
the polar cone and the dual cone in (1) and the relationship K⊥ = −K∗ it follows that

PK(z) = z + PK∗(−z), ∀ z ∈ Rm.

Hence the problem of projecting onto K is equivalent to problem of projecting onto K∗.

The following result follows from the definition of the polar. For a proof see for example [1].

Lemma 1 Let A ∈ Rm×m be a nonsingular matrix. Then,

(ARm
+ )⊥ = −(A>)−1Rm

+ .

The following result has been proved in [1] by using Moreau’s decomposition theorem and Lemma 1.

Lemma 2 Let A ∈ Rm×m be a nonsingular matrix and K = ARm
+ the corresponding simplicial

cone. Then, for any z ∈ Rm there exists a unique x ∈ Rm such that the following two equivalent
statements hold:

(i) z = Ax+ − (A>)−1x−, x ∈ Rm,

(ii) Ax+ = PK(z) and −(A>)−1x− = PK⊥(z).

The following result is a direct consequence of Lemma 2, it shows that solving Problem 1 is reduced
to solving Problem 2.

Lemma 3 Let A ∈ Rm×m be a nonsingular matrix, K = ARm
+ the corresponding simplicial cone

and z ∈ Rm arbitrary. Then, equations (6) and (7) have a unique solution u and PK(z) = Au+,
i.e., to solve Problem 1 is equivalent to solving either Problem 2 or Problem 3.

Proof. Since A is an m ×m nonsingular matrix, multiplying by A>, the equality in item (i) of
Lemma 2 is equivalently transformed into

A>Ax+ − x− = A>z.

As −x− = x − x+, the above equality is equivalent to (6). Therefore, equation (6) is equivalent
to the equation in item (i) of Lemma 2. Hence, we conclude from Lemma 2 that equation (6) has
a unique solution u and PK(z) = Au+. Since the equations (6) and (7) are equivalent the result
follows. 2
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4 Picard’s Method

In this section we will present two different Picard’s iterations one on them for solving Problem 2,
the other one for solving Problem 3 and as a consequence for solving Problem 1.

4.1 Picard’s Method for solving Problem 2

The Picard’s method for solving Problem 2 is formally defined by

xk+1 = −
(
A>A− I

)
x+k +A>z, k = 0, 1, 2, . . . . (8)

The sequence {xk} with starting point x0 ∈ Rm, called the Picard’s sequence for solving Problem 2.
The next theorem provides a sufficient condition for the linear convergence of the Picard’s iteration
(8).

Theorem 3 Let A ∈ Rm×m be a nonsingular matrix, K = ARm
+ the corresponding simplicial cone

and z ∈ Rm arbitrary. If
‖A>A− I‖ < 1, (9)

then the Picard’s sequence {xk} for solving Problem 2 converges to the unique solution u of equation
(6) from any starting point x0 ∈ Rm, PK(z) = Au+ and the following error bound holds

‖u− xk‖| ≤
‖A>A− I‖

1− ‖A>A− I‖
‖xk − xk−1‖, ∀ k = 1, 2 . . . . (10)

Moreover, the sequence {xk} converges linearly to u as follows

‖u− xk+1‖ ≤ ‖A>A− I‖‖u− xk‖, k = 0, 1, 2, . . . . (11)

Proof. Define the function F : Rm → Rm as

F (x) = −
(
A>A− I

)
x+ +A>z. (12)

Since Remark 1 implies ‖x+ − y+‖ ≤ ‖x− y‖ for all x, y ∈ Rm, from (12) it easy to conclude that

‖F (x)− F (y)‖ ≤ ‖A>A− I‖‖x− y‖, ∀ x, y ∈ Rm.

Therefore, as by assumption ‖A>A − I‖ < 1 we may apply Theorem 1 with X = Rm, T = F ,
d(x, y) = ‖y − x‖ for all x, y ∈ Rm and α = ‖A>A − I‖, for concluding that the Picard’s Method
(8) or equivalently, the sequence

xk+1 = F (xk), k = 0, 1, . . . .

converges to a unique fixed point u of F , which from (12) is the solution of the Problem 2, i.e.,(
A>A− I

)
u+ + u = A>z,

and by using Lemma 3 we have PK(z) = Au+. Moreover, Theorem 1 implies that the inequalities
(10) and (11) hold. 2
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4.2 Picard’s Method for solving Problem 3

The Picard’s method for solving Problem 3 is formally defined by(
A>A+ I

)
xk+1 = −

(
A>A− I

)
|xk|+ 2A>z, k = 0, 1, 2, . . . . (13)

The sequence {xk} with starting point x0 ∈ Rm, called the Picard’s sequence for solving equation
(7) or for projecting a point z ∈ Rm onto the simplicial cone K. From now on we will refer this
method as Picard 2.

Since A ∈ Rm×m is a nonsingular matrix we conclude that A>A is symmetric and positive
definite. Hence, A>A+ I is nonsingular. Then for simplifying the notations define

C :=
(
A>A+ I

)−1 (
A>A− I

)
. (14)

Let λ1, . . . λm and σ1, . . . σm be the eigenvalues of A>A and C, respectively. As λi > 0, for
i = 1, 2, . . .m, it easy to conclude that

‖C‖ = max {|σ1|, . . . |σm|} < 1, where σi =
1− λi
λi + 1

, i = 1, 2, . . .m.

The next theorem provides the convergence of the Picard’s iteration (13).

Theorem 4 Let A ∈ Rm×m be a nonsingular matrix, K = ARm
+ the corresponding simplicial

cone and z ∈ Rm arbitrary. The Picard’s sequence {xk} for solving Problem 3 is well defined and
converges to the unique solution u of equation (7) from any starting point x0 ∈ Rm, PK(z) = Au+

and the following error bound holds

‖u− xk‖ ≤
‖C‖

1− ‖C‖
‖xk − xk−1‖, ∀ k = 1, 2 . . . . (15)

Moreover, the sequence {xk} converges linearly to u as follows

‖u− xk+1‖ ≤ ‖C‖‖u− xk‖, k = 0, 1, 2, . . . . (16)

Proof. Since the matrix A>A+ I is nonsingular, the function F : Rm → Rm,

F (x) := −
(
A>A+ I

)−1 (
A>A− I

)
|x|+ 2

(
A>A+ I

)−1
A>z, (17)

is well defined. Since ‖|x| − |y|‖ ≤ ‖x− y‖ for all x, y ∈ Rm, from (17) and (14) we conclude that

‖F (x)− F (y)‖ ≤ ‖C‖‖x− y‖, ∀ x, y ∈ Rm.

Therefore, as ‖C‖ < 1 we may apply Theorem 1 with X = Rm, T = F , d(x, y) = ‖y − x‖ for all
x, y ∈ Rm and α = ‖C‖, for concluding that the Picard’s Method (13) or equivalently, the sequence

xk+1 = F (xk), k = 0, 1, . . . .

converges to a unique fixed point u of F , which from (17) is the solution of the Problem 3, i.e.,(
A>A+ I

)
u+

(
A>A− I

)
|u| = 2A>z,

and by using Lemma 3 we have PK(z) = Au+. Moreover, Theorem 1 implies that the inequalities
(15) and (16) hold. 2

7



5 Comparison between Picard’s and Newton’s methods

In this section theoretical and numerical comparisons of above Picard’s methods and semi-smooth
Newton’s method studied in [17] are provided. Also Picard’s method (13) is applied to solve an
specific example.

5.1 Theoretic comparison

In this section theoretical comparisons between Picard’s methods and semi-smooth Newton’s method
for solving Problem 1 will be provided.

It is shown in [17] that the semi-smooth Newton method applied to the equations (6), namely,((
A>A− I

)
diag(sgn(x+k )) + I

)
xk+1 = A>z, k = 0, 1, 2, . . . , (18)

is always well defined and under the assumption

‖A>A− I‖ < b <
1

3
, (19)

on the matrix A defining the simplicial cone K = ARm
+ , the generated sequence {xk} converges

linearly to the unique solution u of Problem 2 from any starting point and, as a consequence of
Lemma 3 we have PK(z) = Au+ for any z ∈ Rm, which implies that u solves Problem 1.

Problem 1, i.e., the problem of projecting a point z ∈ Rm onto a simplicial cone K = ARm
+ is

equivalent, by Lemma 3, to solving either Problem 2 or Problem 3. Note that for solving Problems 2
by Picard’s method (8) assumption (9) on the matrix A (see Theorem 3) is less restrictive than
assumption (19). When solving Problem 3 we only need the invertibility of the matrix A for Picard’s
method (13) to converge (see Theorem 4). Therefore, Picard’s method (13) is theoretically more
robust than Picard’s method (8) and consequently than semi-smooth Newton method (18). In the
next section we will present an example, where according to the established theory, only Picard’s
method (13) can be applied.

The main drawbacks of Picard (13) and semi-smooth Newton (18) is that both require the
solution of a linear system in each iteration which constitute the largest computational effort of
these methods. Picard’s method (8) do not have to solve a linear system, avoiding more complicated
calculations, which is particularly interesting for large scale problems. We will investigate the
efficiency of these method in section 5.2.1.

5.1.1 Example

Consider the monotone nonnegative cone, which is a simplicial cone K defined by

K :=
{
x = (x1, . . . , xm) ∈ Rm, x1 ≥ x2 ≥ . . . xm ≥ 0

}
, (20)

The monotone nonnegative cone and the projection onto it occurs in various important practical
problems such as the problem of map-making from relative distance information e.g., stellar cartog-
raphy (see www.convexoptimization.com/wikimization/index.php/Projection_on_Polyhedral_Convex_
Cone and Section 5.13.2 in [12]) and isotonic regression [8, 21, 22, 36]. The isotonic regression
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[3, 7, 39, 40] is a very important topic in statistics with hundreds of papers and several books ded-
icated to this topic. This section provides a different view about projecting onto the monotone
nonnegative cones via Picard’s method (13) which is related to the iterative theory of bidiagonal
and tridiagonal matrices, and the Fibonacci numbers. The dual of the monotone nonnegative cone
is K∗ = ARm

+ , where A ∈ Rm×m is the nonsingular matrix

A =


1
−1 1

−1 1
. . .

. . .

−1 1

 , A>A =


2 −1
−1 2 −1

−1
. . .

. . .
. . . 2 −1

−1 1

 .

From Remark 3, the problem of projecting a point onto K∗ is equivalent to projecting onto K. Let
λ1, . . . λm be the eigenvalues of A>A. From [47] we have that the eigenvalues of matrix A>A are
given by

λi = 2 + 2 cos

(
2iπ

2m+ 1

)
, i = 1, 2, . . .m. (21)

Hence from (21) we conclude that

0 < λi < 4, lim
m→∞

λm = 0, lim
m→∞

λ1 = 4, lim
m→∞

‖A>A− I‖ = 3.

Since ‖A>A−I‖ > 1 for all m ≥ 2, for projecting a point onto the cone K∗, we can not apply semi-
smooth Newton method studied in [17] neither Picard’s iteration (8). However Picard’s method (13)
can be used. In order to reduce the computational cost of this method, for solving the linear system
involved in each iteration, we suggest the following triangular decomposition

A>A+ I =


d1 −1

d2 −1
. . .

. . .

dm−1 −1
dm





1
− 1

d2
1

− 1
d3

. . .

. . . 1
− 1

dm
1

 ,

where dm = 2, di = 3 − 1/di+1 for i = m − 1, · · · , 1. Another alternative for solving the linear
system would be to compute the matrices

R =
(
A>A+ I

)−1 (
A>A− I

)
, S =

(
A>A+ I

)−1
A>.

By using the recursion formulas for a tridiagonal matrix from [11], which are based on the results
of [18, 45, 46], after some algebraic manipulations and taking into account that R is symmetric we
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obtain

Rij =



−2F2iF2m−2j+1

F2m+1
if 1 < i < j < m,

F2iF2m−2i − F2i−2F2m−2i+1

F2m+1
if 1 < i = j < m,

2F2m−2j+1

F2m+1
if 1 = i < j < m,

− 2F2i

F2m+1
if 1 < i < j = m,

− 2

F2m+1
if i = 1, j = m,

F2m−2
F2m+1

if i = j = 1,m.

Sij =



−F2iF2m−2j+2

F2m+1
if i < j,

F2j−1F2m−2i+1

F2m+1
if 1 < j ≤ i,

F2m−2i+1

F2m+1
if 1 = j ≤ i.

where Fi is the Fibonacci sequence defined by F0 = 0, F1 = 1 and Fi+2 = Fi + Fi+1.

5.2 Computational results

In this section we present two numerical experiments. In the first, numerical comparisons between
Picard’s methods (8), (13) and semi-smooth Newton’s method (18) for solving Problem 1 will be
provided. In the second one, we study the behavior Picard’s method (13) solving the problem
described in Section 5.1.1. All programs were implemented in MATLAB Version 7.11 64-bit and
run on a 3.40GHz Intel Core i5 − 4670 with 8.0GB of RAM. All MATLAB codes and generated
data of this paper are available in http://orizon.mat.ufg.br/pages/34449-publications.

General considerations:

• In order to accurately measure the method’s runtime for a problem, each of them was solved 10
times and the runtime data collected. Then, we defined the corresponding method’s runtime
for a problem as the median of these measurements.

• We consider that the method converged to the solution and stopped the execution when, for
some k, the condition

‖u− xk‖
‖u‖

< RelativeTolerance,
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is satisfied.

5.2.1 Numerical experiment I

In this experiment, we study the percentage of problems for which a method was the fastest one
(efficiency) to compare them. With the aim that methods (8), (13) and (18) find solution on 1000
generated random test problems of dimension m = 1000, we construct the matrix A (defining the
simplicial cone K = ARm

+ ) in each problem satisfying the condition (19).
We assume that a method is the fastest one for a problem, if the corresponding runtime is less

than or equal than 1.01 times the best time of all methods to find the solution.
Each test problem was generated as follows:

(i) To construct the matrix A ∈ Rm×m satisfying the condition (19), we first chose a random
number b from the standard uniform distribution on the open interval (0, 1/3). Then, we
chose a random number b̄ from the standard uniform distribution on the open interval (0, b).
We compute the matrices S, V and D, respectively, from the singular value decomposition of
a m×m generated real matrix containing random values drawn from the uniform distribution
on the interval [−106, 106]. Finally we computed

A = S(sqrt(I + b̄(V/v)))D,

were v is the largest singular value of V , the operator / denotes element-by-element division
and sqrt(M) is the square root of the elements of the matrix M .

(ii) We chose the solution u ∈ Rm containing random values drawn from the uniform distribution
on the interval [−106, 106] and computed z ∈ Rm from equation (6). Finally we chose a
starting point x0 ∈ Rm containing random values drawn from the uniform distribution on the
interval [−106, 106].

In order to provide information for the analysis of the large test problems set considered, we
use the performance profiles (see [14]). The performance profiles for a method is the cumulative
distribution function for a performance metric. In this case we use the ratio of the method’s runtime
versus the best runtime of all of the methods as the performance metric. Efficiency can be checked
in the value of the profile function at 1.

Figure 1 shows the performance profiles of the three methods for different relative tolerance
values. These graphs reveal that Picard’s method (13) was the most efficient for low and medium
accuracy, while semi-smooth Newton’s method (18) was the most efficient for high accuracy re-
quirements. However, since semi-smooth Newton’s method (18) requires at each step the solution
of a system of linear equations, which may become unreasonably expensive computationally as the
problem dimension increases, these results suggest that for large scale problems Picard’s method
(8) is recommended.
On the other hand, Picard’s method (13) was always the worst, except in the low accuracy case.
It can be inferred from Figure 2, where convergence mean time for each problem consumed by
Picard’s method (13) is less than consumed by semi-smooth Newton’s method (18).

Figure 2 shows, as one would expect, the number of iteration on semi-smooth Newton method is
less than Picard’s methods (8) and (13) for solving the same set of problems and only from certain
tolerance semi-smooth Newton method consume less time.
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(a) RelativeTolerance=10−7 (b) RelativeTolerance=10−10 (c) RelativeTolerance=10−13

Figure 1: Performance profiles on [1,4] for different accuracies. ssNewton, Picard and Picard2
denotes the methods (8), (13) and (18), respectively.

5.2.2 Numerical experiment II

In this experiment, we study the behavior of Picard’s method (13) solving the problem described
in Section 5.1.1 on sets of 100 generated random test problems of dimension m = 100, m = 500,
m = 1000, m = 1500, m = 2000, respectively.

Each m−dimensional test problem was generated as follows: We construct the matrix A (defin-
ing the simplicial cone K∗ = ARm

+ ) as is defined in Section 5.1.1. We chose the solution u ∈ Rm,
computed z ∈ Rm and chose a starting point x0 ∈ Rm as we described in the previous Section 5.2.1.

The computational results obtained are reported in Table 1. From these, it can be noted that
for the same dimension, to achieve higher accuracy, the method needs to perform a greater number
of iterations and consequently consume more runtime. The same behavior occurs when, for the
same accuracy, the dimension of the problem increases.

Dimension Total Iterations Total Time

m = 100 4927 7475 10036 1.096 1.624 2.180

m = 500 6613 10333 14055 66.183 103.411 140.812

m = 1000 8120 12873 17640 449.507 717.310 984.274

m = 1500 8159 12924 17732 1358.698 2151.743 2952.247

m = 2000 8814 14054 19359 3098.215 4955.041 6820.121

Relative Tolerance 10−7 10−10 10−13 10−7 10−10 10−13

Table 1: Total overall iterations and total time in seconds, performed and consumed, respectively
by Picard’s method (13) to solve the 100 test problems of each dimension for different accuracies.
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Figure 2: Total overall iterations and total time in seconds, performed and consumed, respectively
by each method to solve the 1000 test problems for different accuracies. ssNewton, Picard and
Picard2 denotes the methods (8), (13) and (18), respectively.

6 Conclusions

In this paper we studied the problem of projection onto a simplicial cone which, via Moreau’s
decomposition theorem for projecting onto cones, is reduced to finding the unique solution of
a nonsmooth system of equations. Our main results show that, under a mild assumption on
the simplicial cone, we can apply Picard’s method for finding a unique solution of the obtained
associated system and that the generated sequence converges linearly to the solution for any starting
point. Note that in Theorem 4 we do not make any assumption on the simplicial cone, on the other
hand, we have to solve a linear equation in each iteration. It would be interesting to see whether
the used technique can be applied for finding the projection onto more general cones. As has been
shown in [44], the problem of projection onto a simplicial cone is reduced to a certain type of
linear complementarity problem (LCP). Numerical comparisons between Picard’s methods (8,13)
and semi-smooth Newton’s method (18) for solving Problem 1 was provided in Section 5. It would
also be interesting to compare these methods with the methods proposed in [16, 32, 44] and the
Lemke’s method for LCPs.
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